计算机工程与应用 ›› 2022, Vol. 58 ›› Issue (12): 199-208.DOI: 10.3778/j.issn.1002-8331.2011-0097
卫依雪,周冬明,王长城,李淼
WEI Yixue, ZHOU Dongming, WANG Changcheng, LI Miao
摘要: 随着夜景拍摄技术的提高,低照度图像增强成为计算机视觉领域一个新的热点。但是由于光照不足、逆光、聚焦失败等因素的影响会导致光照强度不足,导致图像亮度和对比度过低。为了更好地处理低光照图像,提出了一种基于多分支结构和U-net结合的低照度图像增强算法。利用深度残差网络将图片不同层次的特征提取出来进行交叉合并。将得到的图像通过不同深度和结构的U-net进行增强。将U-net增强后的图像进行融合,最终得到了增强后的低照度图像。通过大量的实验表明,运用深度残差网络和U-net,可以更好地进行特征提取,低照度图像增强的效果也更好,很大程度上优于现有的技术。提出的方法不仅在视觉上提高了亮度和对比度,色彩更真实,更加符合人眼视觉系统特性,而且PSNR、SSIM等七项客观图像质量指标在几种算法中都是最优的。