计算机工程与应用 ›› 2022, Vol. 58 ›› Issue (7): 197-205.DOI: 10.3778/j.issn.1002-8331.2010-0115
柴瑞敏,殷臣
CHAI Ruimin, YIN Chen
摘要: 随着移动设备和社交软件的普遍应用,下一个兴趣点推荐(next POI recommendation)变成了基于位置的社交网络(LBSN)的一个非常重要的任务。现实生活中用户访问的下一个兴趣点通常受到用户签到序列信息、用户关系和该地点的上下文信息等诸多方面的影响。基于循环神经网络(RNN)的方法已经被广泛的应用到下一个兴趣点推荐中,但是这些基于RNN的方法缺乏对用户关系进行深入建模。为了解决上述问题,提出了一种整合用户关系和门控循环单元(GRU)进行下一个兴趣点推荐的模型(GRU-R),同时该模型能够考虑用户签到序列信息、用户关系、兴趣点的时空信息和类别信息等进行下一个兴趣点推荐。在两个真实公开的数据集上进行实验,结果表明提出的模型比现有主流的下一个兴趣点推荐算法具有更高的推荐准确性。