[1] TIAN Z, HUANG W, HE T, et al. Detecting text in natural image with connectionist text proposal network[C]//European Conference on Computer Vision. Cham:Springer, 2016: 56-72.
[2] ZHOU X, YAO C, WEN H, et al. EAST: an efficient and accurate scene text detector[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017: 5551-5560.
[3] MILLETARI F, NAVAB N, AHMADI S A. V-net: fully convolutional neural networks for volumetric medical image segmentation[C]//2016 Fourth International Conference on 3D Vision (3DV), 2016: 565-571.
[4] DENG D, LIU H, LI X, et al. PixelLink: detecting scene text via instance segmentation[C]//Proceedings of the AAAI Conference on Artificial Intelligence,2018.
[5] XU Y, WANG Y, ZHOU W, et al. TextField: learning a deep direction field for irregular scene text detection[J]. IEEE Transactions on Image Processing, 2019, 28(11): 5566-5579.
[6] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 40(4): 834-848.
[7] WANG J, YUAN Y, YU G. Face attention network: an effective face detector for the occluded faces[J]. arXiv:1711. 07246, 2017.
[8] LIN T, WANG Y, LIU X, et al. A survey of transformers[J]. arXiv:2106.04554, 2021.
[9] LIU Z, LIN Y, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 10012-10022.
[10] HE K, GKIOXARI G, DOLLáR P, et al. Mask R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision,2017: 2961-2969.
[11] KARATZAS D, GOMEZ-BIGORDA L, NICOLAOU A, et al. ICDAR 2015 competition on robust reading[C]//2015 13th International Conference on Document Analysis and Recognition (ICDAR), 2015: 1156-1160.
[12] CH’NG C K, CHAN C S. Total-text: a comprehensive dataset for scene text detection and recognition[C]//2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), 2017: 935-942.
[13] LIU Y L,?JIN L W,?ZHANG S T, et al. Detecting curve text in the wild: new dataset and new solution[J]. arXiv:1712. 02170, 2017.
[14] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]//Advances in Neural Information Processing Systems, 2015.
[15] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
[16] SU J, LIU Z, ZHANG J, et al. DV-Net: accurate liver vessel segmentation via dense connection model with D-BCE loss function[J]. Knowledge-Based Systems, 2021, 232: 107471.
[17] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]//European Conference on Computer Vision. Cham: Springer, 2014: 740-755.
[18] MA J, SHAO W, YE H, et al. Arbitrary-oriented scene text detection via rotation proposals[J]. IEEE Transactions on Multimedia, 2018, 20(11): 3111-3122.
[19] SHI B, BAI X, BELONGIE S. Detecting oriented text in natural images by linking segments[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2550-2558.
[20] WANG W, XIE E, LI X, et al. Shape robust text detection with progressive scale expansion network[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 9336-9345.
[21] LONG S, RUAN J, ZHANG W, et al. Textsnake: a flexible representation for detecting text of arbitrary shapes[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 20-36.
[22] LYU P, LIAO M, YAO C, et al. Mask textSpotter: an end-to-end trainable neural network for spotting text with arbitrary shapes[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 67-83. |