计算机工程与应用 ›› 2023, Vol. 59 ›› Issue (4): 183-190.DOI: 10.3778/j.issn.1002-8331.2205-0137
王建波,武友新
WANG Jianbo, WU Youxin
摘要: 针对已有的安全帽检测方法存在的模型参数量大,难以部署在边缘设备上,以及对较小目标检测效果不好等问题,提出一种改进YOLOv4-tiny的轻量级安全帽检测模型。针对小目标丢失过多问题,增加了检测小目标的尺度,提升模型关注小目标的能力。提出了一种轻量级特征融合结构,缓解特征融合部分的语义混叠问题,并且在模型中融入了优化的注意力模块,提升模型捕获上下文信息的能力。针对分类与回归任务之间的冲突,将模型预测头替换为解耦合的预测头,采用并行的卷积分别进行分类与回归任务。将改进的模型命名为HM-YOLO,通过实验验证了HM-YOLO算法的有效性,相比YOLOv4-tiny模型,HM-YOLO模型平均精度提升了14.2个百分点,参数量减少了19%,检测速度为为63?FPS,具有良好的检测精度和实时性,更易于部署在边缘设备上。