计算机工程与应用 ›› 2022, Vol. 58 ›› Issue (18): 172-179.DOI: 10.3778/j.issn.1002-8331.2203-0577
牛润,曲毅,郑乐辉,魏建国
NIU Run, QU Yi, ZHENG Lehui, WEI Jianguo
摘要: 当前目标检测算法对小目标检测存在特征信息易丢失的问题,利用网络处理高分辨率特征图数据可以缓解,但存在语义信息不足和计算负担大的缺点。为弥补这些缺点,提出一种有效处理高分辨率特征图、多深度子网并行连接的特征提取网络。构建输入图像金字塔,搭建多深度分支子网并行连接的结构,使用浅层网络处理图像金字塔中高分辨率特征图,深层网络处理低分辨率特征图,多分支同时运行并在中间位置进行两次特征融合,充分结合高分辨率特征信息和低分辨率语义信息;使用融合因子构建对小目标针对性强的多尺度特征融合结构,增强对小目标检测能力;使用注意力机制进一步提高特征提取能力。在公开数据集AI-TOD上进行实验表明,所设计的特征提取网络相较于其他常用特征提取网络对小目标的检测能力更强,在two-stage经典模型Faster-RCNN、one-stage经典模型SSD、YOLOv3以及anchor-free经典模型CenterNet上替换上原主干网络,检测平均精度mAP与原来相比分别提升了2.7、3.4、3.3、1.7个百分点,证明了所提网络结构的适用性和有效性。