计算机工程与应用 ›› 2022, Vol. 58 ›› Issue (13): 241-248.DOI: 10.3778/j.issn.1002-8331.2203-0065
牛浩青,欧鸥,饶姗姗,马万民
NIU Haoqing, OU Ou, RAO Shanshan, MA Wanmin
摘要: 针对当前目标检测任务中对小目标检测识别率低,漏检率高的问题,提出一种基于门控通道注意力机制(EGCA)和自适应上采样模块的改进YOLOv3算法。该算法采用DarkNet-53作为主干网络进行图片基础特征提取;引入自适应上采样模块对低分辨率卷积特征图进行扩张,有效增强了不同尺度卷积特征图的融合效果;在三个尺度通道输出预测结果之前分别加入EGCA注意力机制以提高网络对小目标的特征表达和检测能力。将改进的算法在公开数据集RSOD(remote sensing object detection)上进行实验,小目标检测精度提升了8.2个百分点,最为显著,平均精度AP值达到56.3%,较原算法提升了7.9个百分点。实验结果表明,改进的算法相比于传统YOLOv3算法和其他算法拥有更好的小目标检测能力。