计算机工程与应用 ›› 2022, Vol. 58 ›› Issue (11): 187-192.DOI: 10.3778/j.issn.1002-8331.2012-0521
周慧,严凤龙,褚娜,刘振宇
ZHOU Hui, YANG Fenglong, CHU Na, LIU Zhenyu
摘要: 复杂场景下小目标检测是目标检测领域的研究难点和热点。传统的two-stage和one-stage检测模型都是通过预先设定锚点框与真实目标框的交并比(intersection over union,IoU)阈值来划分正负样本集,同时这组预定义的固定锚点框还用于获取候选框,进而得到检测结果。然而,在复杂场景下,预先设定的IoU阈值会带来正负样本不均衡问题;针对小尺寸目标(船舶)检测,预定义的锚点框也很难保证覆盖目标的位置和密度,因此限制了检测模型的准确率。为了解决上述问题,提出自适应锚点框(adaptive anchor boxes,AAB)的方法优化目标检测网络,采用基于形状相似度距离的聚类算法生成锚点框,提高目标区域定位技术;采用利用聚类的锚点框计算自适应IoU阈值(adaptive threshold selection,ATS),划分正负样本,保证样本均衡。对复杂场景下的小目标(船舶目标)进行检测,实验结果表明,采用自适应锚点框方法和自适应阈值选择方法的目标检测模型在复杂场景中检测均能提升准确,对比faster R-CNN、FPN、Yolo3和pp-Yolo,融合了上述新方法的模型均提升了检测准确率,分别提升了9.6、2.6、9.8和9.9个百分点。