计算机工程与应用 ›› 2022, Vol. 58 ›› Issue (19): 233-241.DOI: 10.3778/j.issn.1002-8331.2103-0079
胡长康,李凯扬
HU Changkang, LI Kaiyang
摘要: 热层析技术应用于医学乳腺肿瘤检测具有重要的应用前景,但是医生在临床应用过程中,通过热层析图像诊断容易出现主观差异性误诊现象,为此,提出了一种智能化分割算法用于辅助诊断。然而,医学热层析图像由于目前数据量匮乏,且病灶区域占比小,依靠经典的分割模型,如FCN、U-Net容易出现分割不连续,边界细节分割不精细等问题。设计了一种基于并行多尺度特征融合的语义分割模型,模型通过并行的多分辨率特征子网之间反复的信息交换,在保证分割结果语义信息准确之外,还能有效地抓取病灶区域的细节特征。该方法在热层析医学图像数据集上取得了0.635?7的均交并比,相较于经典的U-Net分割网络,取得了5.14个百分点的提升,在肿块和血管等小目标区域的细节分割上有着更出色的表现。实验结果表明,该算法对热层析临床用于乳腺癌的辅助诊断具有现实意义。