计算机工程与应用 ›› 2022, Vol. 58 ›› Issue (16): 18-30.DOI: 10.3778/j.issn.1002-8331.2203-0229
张颖,仇大伟,刘静
出版日期:
2022-08-15
发布日期:
2022-08-15
ZHANG Ying, QIU Dawei, LIU Jing
Online:
2022-08-15
Published:
2022-08-15
摘要: 由于肝脏肿瘤图像复杂多样且肝脏肿瘤图像数据集获取困难等问题,快速准确地诊断肝脏肿瘤疾病面临着诸多挑战,尤其是肝脏肿瘤的分割是其中的关键研究内容。生成对抗网络在半监督学习领域具有强大的优越性,因此其在医学图像处理中得到广泛应用。为了分析肝脏肿瘤图像在分割领域的现状以及未来发展,针对应用GAN的肝脏肿瘤图像分割方法进行研究,介绍GAN模型的网络结构与衍生模型,重点总结并分析生成对抗网络在肝脏肿瘤图像分割中的应用,包括基于网络结构改进的GAN方法、基于生成器或判别器改进的GAN方法和基于GAN的其他改进方法。最后在已有的研究进展和基础之上,对GAN在肝脏肿瘤图像分割中的应用进行总结,讨论GAN在肝脏肿瘤图像分割上所面临的挑战,并对其未来发展进行展望。
张颖, 仇大伟, 刘静. 生成对抗网络在肝脏肿瘤图像分割中的应用综述[J]. 计算机工程与应用, 2022, 58(16): 18-30.
ZHANG Ying, QIU Dawei, LIU Jing. Review on Application of Generative Adversarial Network in Liver Tumor Image Segmentation[J]. Computer Engineering and Applications, 2022, 58(16): 18-30.
[1] 陶雨溪,蔡泽宇,宋腾飞,等.人工智能和影像组学在原发性肝癌中的应用进展[J].中华放射学杂志,2021,55(11):1222-1225. TAO Y X,CAI Z Y,SONG T F,et al.The progress and application of artificial intelligence and radiomics on primary liver cancer[J].Chinese Journal of Radiology,2021,55(11):1222-1225. [2] MOSTAFA A,ABD ELFATTAH M,FOUAD A,et al.Region growing segmentation with iterative K-means for CT liver images[C]//2015 4th International Conference on Advanced Information Technology and Sensor Application,2015:88-91. [3] LI B N,CHUI C K,CHANG S,et al.A new unified level set method for semi-automatic liver tumor segmentation on contrast-enhanced CT images[J].Expert Systems with Applications,2012,39(10):9661-9668. [4] LECUN Y,BOSER B,DENKER J S,et al.Backpropagation applied to handwritten zip code recognition[J].Neural Computation,1989,1(4):541-551. [5] LONG J,SHELHAMER E,DARRELL T.Fully convolutional networks for semantic segmentation[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition,2015:3431-3440. [6] BEN-COHEN A,DIAMANT I,KLANG E,et al.Fully convolutional network for liver segmentation and lesions detection[M]//Deep learning and data labeling for medical applications.Cham:Springer,2016:77-85. [7] RONNEBERGER O,FISCHER P,BROX T.U-Net:convolutional networks for biomedical image segmentation[C]//18th International Conference on Medical Image Computing and Computer-Assisted Intervention.Cham:Springer,2015:234-241. [8] GOODFELLOW I,POUGET-ABADIE J,MIRZA M,et al.Generative adversarial nets[C]//Advances in Neural Information Processing Systems 27,2014. [9] LUC P,COUPRIE C,CHINTALA S,et al.Semantic segmentation using adversarial networks[J].arXiv:1611.08408,2016. [10] 陈佛计,朱枫,吴清潇,等.生成对抗网络及其在图像生成中的应用研究综述[J].计算机学报,2021,44(2):347-369. CHEN F J,ZHU F,WU Q X,et al.A survey about image generation with generative adversarial nets[J].Chinese Journal of Computers,2021,44(2):347-369. [11] 宋杰,肖亮,练智超,等.基于深度学习的数字病理图像分割综述与展望[J].软件学报,2021,32(5):1427-1460. SONG J,XIAO L,LIAN Z C,et al.Overview and prospect of deep learning for image segmentation in digital pathology[J].Journal of Software,2021,32(5):1427-1460. [12] 李祥霞,谢娴,李彬,等.生成对抗网络在医学图像处理中的应用[J].计算机工程与应用,2021,57(18):24-37. LI X X,XIE X,LI B,et al.Application of generative adversarial networks in medical image processing[J].Computer Engineering and Applications,2021,57(18):24-37. [13] 曹仰杰,贾丽丽,陈永霞,等.生成式对抗网络及其计算机视觉应用研究综述[J].中国图象图形学报,2018,23(10):1433-1449. CAO Y J,JIA L L,CHEN Y X,et al.Review of computer vision based on generative adversarial networks[J].Journal of Image and Graphics,2018,23(10):1433-1449. [14] 朱秀昌,唐贵进.生成对抗网络图像处理综述[J].南京邮电大学学报(自然科学版),2019,39(3):1-12. ZHU X C,TANG G J.A survey on generative adversarial networks in image processing[J].Journal of Nanjing University of Posts and Telecommunications(Natural Science Edition),2019,39(3):1-12. [15] MIRZA M,OSINDERO S.Conditional generative adversarial nets[J].arXiv:1411.1784,2014. [16] ARJOVSKY M,CHINTALA S,BOTTOU L.Wasserstein generative adversarial networks[C]//International Conference on Machine Learning,2017:214-223. [17] GULRAJANI I,AHMED F,ARJOVSKY M,et al.Improved training of Wasserstein GANs[J].arXiv:1704.00028,2017. [18] ISOLA P,ZHU J Y,ZHOU T,et al.Image-to-image translation with conditional adversarial networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition,2017:1125-1134. [19] ZHAO J,MATHIEU M,LECUN Y.Energy-based generative adversarial network[J].arXiv:1609.03126,2016. [20] ODENA A.Semi-supervised learning with generative adversarial networks[J].arXiv:1606.01583,2016. [21] 邹秀芳,朱定局.生成对抗网络研究综述[J].计算机系统应用,2019,28(11):1-9. ZOU X F,ZHU D J.Review on generative confrontation network[J].Computer Systems & Applications,2019,28(11):1-9. [22] 梁俊杰,韦舰晶,蒋正锋.生成对抗网络GAN综述[J].计算机科学与探索,2020,14(1):1-17. LIANG J J,WEI J J,JIANG Z F.Generative adversarial networks GAN overview[J].Journal of Frontiers of Computer Science and Technology,2020,14(1):1-17. [23] ZHU J Y,PARK T,ISOLA P,et al.Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//2017 IEEE International Conference on Computer Vision,2017:2223-2232. [24] RADFORD A,METZ L,CHINTALA S.Unsupervised representation learning with deep convolutional generative adversarial networks[J].arXiv:1511.06434,2015. [25] LEDIG C,THEIS L,HUSZáR F,et al.Photo-realistic single image super-resolution using a generative adversarial network[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition,2017:4681-4690. [26] WANG X,YU K,WU S,et al.ESRGAN:enhanced super-resolution generative adversarial networks[C]//15th European Conference on Computer Vision Workshops,2018. [27] 吴少乾,李西明.生成对抗网络的研究进展综述[J].计算机科学与探索,2020,14(3):377-388. WU S Q,LI X M.Survey on research progress of generating adversarial networks[J].Journal of Frontiers of Computer Science and Technology,2020,14(3):377-388. [28] 马金林,邓媛媛,马自萍.肝脏肿瘤CT图像深度学习分割方法综述[J].中国图象图形学报,2020,25(10):2024-2046. MA J L,DENG Y Y,MA Z P.Review of deep learning segmentation methods for CT images of liver tumors[J].Journal of Image and Graphics,2020,25(10):2024-2046. [29] XIA K,YIN H,QIAN P,et al.Liver semantic segmentation algorithm based on improved deep adversarial networks in combination of weighted loss function on abdominal CT images[J].IEEE Access,2019,7:96349-96358. [30] REZAEI M,YANG H,MEINEL C.Conditional generative refinement adversarial networks for unbalanced medical image semantic segmentation[J].arXiv:1810.03871,2018. [31] 郑寒.深度学习与解剖学先验融合的医学图像分割研究[D].杭州:浙江大学,2020. ZHENG H.Medical image segmentation based on fusing deep learning and anatomical prior[D].Hangzhou:Zhejiang University,2020. [32] 赵建峰.基于生成对抗网络的肝血管瘤和肝细胞癌的增强及检测方法的研究[D].济南:山东师范大学,2020. ZHAO J F.Research on enhancement and detection of hemangioma and hepatocellular carcinoma based on generative adversarial network[D].Jinan:Shandong Normal University,2020. [33] TANG Y,CAI J,LU L,et al.CT image enhancement using stacked generative adversarial networks and transfer learning for lesion segmentation improvement[C]//International Workshop on Machine Learning in Medical Imaging.Cham:Springer,2018:46-54. [34] 陈英,郑铖,易珍,等.肝脏及肿瘤图像分割方法综述[J].计算机应用研究,2022,39(3):641-650. CHEN Y,ZHENG C,YI Z,et al.Rview of liver and tumor image segmentation methods[J].Application Research of Computers,2022,39(3):641-650. [35] WEI X,CHEN X,LAI C,et al.Automatic liver segmentation in CT images with enhanced GAN and mask region-based CNN architectures[J].BioMed Research International,2021:9956983. [36] YANG D,XU D G,ZHOU S K,et al.Automatic liver segmentation using adversarial image-to-image network:US10600185B2[P].Siemens Healthcare GmbH,2020. [37] 张泽林,李宝明,徐军.基于条件生成对抗网络的三维肝脏及肿瘤区域自动分割[J].生物医学工程学志,2021,38(1):80-88. ZHANG Z L,LI B M,XU J.Automatic three-dimensional segmentation of liver and tumors regions based on conditional generative adversarial networks[J].Journal of Biomedical Engineering,2021,38(1):80-88. [38] HUO Y,XU Z,BAO S,et al.Splenomegaly segmentation using global convolutional kernels and conditional generative adversarial networks[C]//Medical Imaging 2018:Image Processing.International Society for Optics and Photonics,2018:1057409. [39] PENG C,ZHANG X,YU G,et al.Large kernel matters-improve semantic segmentation by global convolutional network[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition,2017:4353-4361. [40] CHEN J,YANG L,ZHANG Y,et al.Combining fully convolutional and recurrent neural networks for 3D biomedical image segmentation[C]//Advances in Neural Information Processing Systems,2016:3036-3044. [41] MA J,DENG Y,MA Z,et al.A liver segmentation method based on the fusion of VNet and WGAN[J].Computational and Mathematical Methods in Medicine,2021:5536903. [42] HE R,XU S,LIU Y,et al.Three-dimensional liver image segmentation using generative adversarial networks based on feature restoration[J].Frontiers in Medicine,2021,8. [43] 曹祺炜,王峰,牛锦.基于3D卷积神经网络的脑肿瘤医学图像分割优化[J].现代电子技术,2020,43(3):4-10. CAO Q W,WANG F,NIU J.Optimization of brain tumor medical image segmentation based on 3D convolutional neural network[J].Modern Electronis Technique,2020,43(3):4-10. [44] KIM B,YE J C.Cycle-consistent adversarial network with polyphase U-Nets for liver lesion segmentation[J].Medical Imaging with Deep Learning,2018. [45] CHEN L,SONG H,WANG C,et al.Liver tumor segmentation in CT volumes using an adversarial densely connected network[J].BMC Bioinformatics,2019,20(16):587. [46] WANG C,SONG H,CHEN L,et al.Automatic liver segmentation using multi-plane integrated fully convolutional neural networks[C]//2018 IEEE International Conference on Bioinformatics and Biomedicine,2018:1-6. [47] XIAO X,ZHAO J,QIANG Y,et al.Radiomics-guided GAN for segmentation of liver tumor without contrast agents[C]//22nd International Conference on Medical Image Computing and Computer-Assisted Intervention.Cham:Springer,2019:237-245. [48] 武坤.基于生成对抗网络的肝癌MRI多对比度合成和分割方法研究[D].太原:太原理工大学,2020. WU K.A Multi-contrast MRI images synthesis and segmentation methods research for hepatocellular carcinoma based on generative adversarial network[D].Taiyuan:Taiyuan University of Technology,2020. [49] REZAEI M,N?PPI J J,LIPPERT C,et al.Generative multi-adversarial network for striking the right balance in abdominal image segmentation[J].International Journal of Computer Assisted Radiology and Surgery,2020,15(11):1847-1858. [50] 闫谙,王卫卫.基于条件能量对抗网络的肝脏和肝肿瘤分割[J].计算机工程与应用,2021,57(11):179-184. YAN A,WANG W W.Segmentation of liver and liver tumor based on conditional energy-based GAN[J].Computer Engineering and Applications,2021,57(11):179-184. [51] 邓鸿,邓雅心,丁廷波,等.基于生成对抗网络的肝脏CT图像分割[J].北京生物医学工程,2021,40(4):367-376. DENG H,DENG Y X,DING T B,et al.Liver CT image segmentation based on generated adversarial network[J].Beijing Biomedical Engineering,2021,40(4):367-376. [52] ENOKIYA Y,IWAMOTO Y,CHEN Y W,et al.Automatic liver segmentation using U-Net with Wasserstein GANs[J].Journal of Image and Graphics,2018,7:94-101. [53] 孟琭,钟健平,李楠.基于GAN的医学图像仿真数据集生成算法[J].东北大学学报(自然科学版),2020,41(3):332-336. MENG L,ZHONG J P,LI N.Generating algorithm of medical image simulation data sets based on GAN[J].Journal of Northeastern University(Natural Science),2020,41(3):332-336. [54] LIU Y,MENG L,ZHONG J.MAGAN:mask attention generative adversarial network for liver tumor CT image synthesis[J].Journal of Healthcare Engineering,2021:6675259. [55] BEN-COHEN A,DIAMANT I,KLANG E,et al.Fully convolutional network for liver segmentation and lesions detection[M]//Deep learning and data labeling for medical applications.Cham:Springer,2016:77-85. [56] BEN-COHEN A,KLANG E,RASKIN S P,et al.Virtual PET images from CT data using deep convolutional networks:initial results[C]//International Workshop on Simulation and Synthesis in Medical Imaging.Cham:Springer,2017:49-57. [57] BEN-COHEN A,KLANG E,RASKIN S P,et al.Cross-modality synthesis from CT to PET using FCN and GAN networks for improved automated lesion detection[J].Engineering Applications of Artificial Intelligence,2019,78:186-194. [58] YANG J,DVORNEK N C,ZHANG F,et al.Unsupervised domain adaptation via disentangled representations:application to cross-modality liver segmentation[C]//22nd International Conference on Medical Image Computing and Computer-Assisted Intervention.Cham:Springer,2019:255-263. [59] TANNER C,OZDEMIR F,PROFANTER R,et al.Generative adversarial networks for MR-CT deformable image registration[J].arXiv:1807.07349,2018. [60] 张欢,刘静,冯毅博,等.U-Net及其在肝脏和肝脏肿瘤分割中的应用综述[J].计算机工程与应用,2022,58(2):1-14. ZHANG H,LIU J,FENG Y B,et al.Review of U-Net and its application in segmentation of liver and liver tumors[J].Computer Engineering and Applications,2022,58(2):1-14. [61] 宋姝洁,崔振超,陈丽萍,等.多特征融合神经网络的眼底血管分割算法[J].计算机科学与探索,2021,15(12):2401-2412. SONG S J,CUI Z C,CHEN L P,et al.Fundus vessel segmentation algorithm based on multi-feature fusion neural network[J].Journal of Frontiers of Computer Science and Technology,2021,15(12):2401-2412. |
[1] | 单怡晴, 黄梦醒, 张雨, 李玉春, 张新华, 冯思玲, 陈晶. 改进卷积神经网络的前列腺癌格里森分级研究[J]. 计算机工程与应用, 2022, 58(7): 243-249. |
[2] | 李沛洋, 李璇, 陈俊杰, 陈永乐. 面向规避僵尸网络流量检测的对抗样本生成[J]. 计算机工程与应用, 2022, 58(4): 126-133. |
[3] | 施漪涵, 仝明磊, 张魁, 姚宏扬. 基于双塔结构的场景文字检测模型[J]. 计算机工程与应用, 2022, 58(3): 242-248. |
[4] | 张欢, 刘静, 冯毅博, 仇大伟. U-Net及其在肝脏和肝脏肿瘤分割中的应用综述[J]. 计算机工程与应用, 2022, 58(2): 1-14. |
[5] | 刘明坤, 张俊华, 李宗桂. 改进Mask R-CNN的甲状腺结节超声图像分割方法[J]. 计算机工程与应用, 2022, 58(16): 219-225. |
[6] | 孟辰, 曾志高, 朱艳辉, 朱文球, 易胜秋, 董丽君. 改进生成对抗网络在图片数据生成中的应用[J]. 计算机工程与应用, 2022, 58(15): 260-269. |
[7] | 王国力, 孙宇, 魏本征. 医学图像图深度学习分割算法综述[J]. 计算机工程与应用, 2022, 58(12): 37-50. |
[8] | 陈功, 曾国辉, 黄勃, 刘瑾. 融合互利共生和透镜成像学习的HHO算法[J]. 计算机工程与应用, 2022, 58(10): 76-86. |
[9] | 赵小虎, 李晓, 叶圣, 李晓, 冯伟, 尤星懿. 基于改进U-Net网络的多尺度番茄病害分割算法[J]. 计算机工程与应用, 2022, 58(10): 216-223. |
[10] | 柴旭,方明,付飞蚺,邵桢. 考场环境下考生视线估计方法[J]. 计算机工程与应用, 2021, 57(9): 199-206. |
[11] | 史春天,曾艳阳,侯守明. 群体智能算法在图像分割中的应用综述[J]. 计算机工程与应用, 2021, 57(8): 36-47. |
[12] | 赵阳,张俊华. 多尺度特征融合的脊柱X线图像分割方法[J]. 计算机工程与应用, 2021, 57(8): 214-219. |
[13] | 潘沛鑫,潘中良. 结合显著性的主动轮廓图像分割[J]. 计算机工程与应用, 2021, 57(8): 225-230. |
[14] | 董鹏,周烽,赵悰悰,王亚飞,米泽田,付先平. 基于双目视觉的水下海参尺寸自动测量方法[J]. 计算机工程与应用, 2021, 57(8): 271-278. |
[15] | 彭璟,罗浩宇,赵淦森,林成创,易序晟,陈少洁. 深度学习下的医学影像分割算法综述[J]. 计算机工程与应用, 2021, 57(3): 44-57. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||