计算机工程与应用 ›› 2021, Vol. 57 ›› Issue (22): 1-14.DOI: 10.3778/j.issn.1002-8331.2106-0166

• 热点与综述 • 上一篇    下一篇

深度学习在自然语言处理领域的研究进展

江洋洋,金伯,张宝昌   

  1. 1.北京航空航天大学 图书馆,北京 100191
    2.北京建筑大学 国际化发展研究院,北京 100044
    3.北京航空航天大学 自动化科学与电气工程学院,北京 100191
    4.北京航空航天大学 人工智能研究院,北京 100191
  • 出版日期:2021-11-15 发布日期:2021-11-16

Research Progress of Natural Language Processing Based on Deep Learning

JIANG Yangyang, JIN Bo, ZHANG Baochang   

  1. 1.Beihang University Library, Beijing 100191, China
    2.International Development Research Institute, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
    3.School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China
    4.Institute of Artificial Intelligence, Beihang University, Beijing 100191, China
  • Online:2021-11-15 Published:2021-11-16

摘要:

通过定量与定性相结合的方式全面分析了深度学习在自然语言处理领域的研究情况。采用CiteSpace和VOSviewer对深度学习在自然语言处理领域的研究国家、机构、期刊分布、关键词共现、共被引网络聚类及时间轴视图等进行知识图谱绘制,理清研究脉络。通过深入挖掘领域内的重要文献,总结深度学习在自然语言处理领域的研究趋势、存在的主要问题或发展瓶颈,并给出相应的解决办法与思路。对于如何跟踪深度学习在自然语言处理领域的研究成果给出建议,为该领域的后续研究与发展提供参考。

关键词: 深度学习(DL), 自然语言处理(NLP), 知识图谱, 可视化

Abstract:

This paper comprehensively analyzes the research of deep learning in the field of natural language processing through a combination of quantitative and qualitative methods. It uses CiteSpace and VOSviewer to draw a knowledge graph of countries, institutions, journal distribution, keywords co-occurrence, co-citation network clustering, and timeline view of deep learning in the field of natural language processing to clarify the research. Through mining important researches in the field, this paper summarizes the research trend, the main problems, development bottlenecks, and gives corresponding solutions and ideas. Finally, suggestions are given on how to track the research of deep learning in the field of natural language processing, and provides references for subsequent research and development in the field.

Key words: Deep Learning(DL), Natural Language Processing(NLP), knowledge graph, visualization