计算机工程与应用 ›› 2021, Vol. 57 ›› Issue (8): 145-152.DOI: 10.3778/j.issn.1002-8331.2001-0180
余磊,许光銮,王洋,林道玉,李峰
YU Lei, XU Guangluan, WANG Yang, LIN Daoyu, LI Feng
摘要:
异质网络是包含多种类型节点和边的复杂信息网络,因此异质网络的可视化通常涉及异质信息的有效处理与可视技术,传统的网络可视化技术对于异质网络可视化来说布局效果混乱、异质信息难以体现。为此提出一种基于动态投影嵌入的多维度异质网络可视化方法。该方法从异质网络的表示学习方法入手,提出动态投影嵌入模型来学习异质网络的节点表示,在此基础上,提出了多维度(空间)的可视化方法,将异质网络节点根据不同属性映射至不同关系空间中进行可视化分析,从而挖掘出潜在的语义信息。实验结果表明,提出的方法不仅使异质网络表示学习的评价指标(MRR)提升了10%,而且从多维度(空间)对异质网络进行可视化,有效地展示和挖掘了网络中的异质信息与潜在语义信息。