计算机工程与应用 ›› 2021, Vol. 57 ›› Issue (15): 101-108.DOI: 10.3778/j.issn.1002-8331.2006-0421
陈恒,祁瑞华,朱毅,杨晨,郭旭,王维美
CHEN Heng, QI Ruihua, ZHU Yi, YANG Chen, GUO Xu, WANG Weimei
摘要:
知识图谱是真实世界三元组的结构化表示。通常,三元组表示形式为(头实体,关系,尾实体),这表示头实体和尾实体通过特定关系相互联系。针对知识图谱中广泛存在的数据稀疏问题,提出一种球坐标建模语义分层的知识图谱补全方法。使用球坐标系对实体和关系进行建模表示,以进行链接预测。具体来说,半径坐标旨在对不同层级的实体进行建模,半径较小的实体级别越高;角度坐标旨在区分相同层级的实体,即模长相等而角度不同的实体。该方法将实体映射到球坐标系中,可以有效建模知识图谱中普遍存在的语义分层现象。实验中,采用公开数据集WN18RR、FB15K-237与YAGO3-10进行相关的链接预测实验。实验结果表明,在WN18RR中,平均倒数排名(Mean Reciprocal Rank)比RotatE提高3.6%,Hit@10比RotatE提高1.9%;在FB15K-237中,平均倒数排名(Mean Reciprocal Rank)比ConvKB提高4.8%,Hit@10比ConvKB提高3.5%。实验证明球坐标建模语义分层的知识图谱补全方法可以有效提高三元组预测准确度。