计算机工程与应用 ›› 2021, Vol. 57 ›› Issue (21): 263-269.DOI: 10.3778/j.issn.1002-8331.2106-0026
秦伟伟,宋泰年,刘洁瑜,王洪伟,梁卓
QIN Weiwei, SONG Tainian, LIU Jieyu, WANG Hongwei, LIANG Zhuo
摘要:
在导弹智能突防的过程中,从海量的遥感图像数据中检测敌方反导阵地具有极大的应用价值。由于弹载部署环境算力有限,设计了一种兼顾轻量化,检测精确率以及检测速度的遥感目标检测算法。制作了典型遥感军事目标数据集,通过K-means算法对数据集聚类分析。利用MobileNetV2网络代替YOLOv3算法的主干网络,保证网络的轻量化和检测速度。提出了适用于遥感目标特性的轻量化高效通道协同注意力模块和目标旋转不变性检测模块,将其嵌入检测算法中,在网络轻量化的基础上提升检测精确率。实验结果表明,提出算法的精确率达到97.8%,提升了6.8个百分点,召回率达到95.7%,提升了3.9个百分点,平均检测精度达到95.2%,提升了4.4个百分点,检测速度达到了每秒34.19张图,而网络大小仅为17.5?MB。结果表明该算法能满足导弹智能突防的综合要求。