计算机工程与应用 ›› 2021, Vol. 57 ›› Issue (21): 256-262.DOI: 10.3778/j.issn.1002-8331.2106-0040
成怡,郝密密
CHENG Yi, HAO Mimi
摘要:
为了解决传统深度强化学习在室内未知环境下移动机器人路径规划中存在探索能力差和环境状态空间奖励稀疏的问题,提出了一种基于深度图像信息的改进深度强化学习算法。利用Kinect视觉传感器直接获取的深度图像信息和目标位置信息作为网络的输入,以机器人的线速度和角速度作为下一步动作指令的输出。设计了改进的奖惩函数,提高了算法的奖励值,优化了状态空间,在一定程度上缓解了奖励稀疏的问题。仿真结果表明,改进算法提高了机器人的探索能力,优化了路径轨迹,使机器人有效地避开了障碍物,规划出更短的路径,简单环境下比DQN算法的平均路径长度缩短了21.4%,复杂环境下平均路径长度缩短了11.3%。