计算机工程与应用 ›› 2021, Vol. 57 ›› Issue (21): 109-115.DOI: 10.3778/j.issn.1002-8331.2101-0461
吴明慧,侯凌燕,王超
WU Minghui, HOU Lingyan, WANG Chao
摘要:
基于时序数据建模的长短时神经网络(LSTM)可用于预测类问题。现实场景中,LSTM预测精度往往与输入序列长度相关,有效的历史信息会被新输入的数据淹没。针对此问题,提出在LSTM节点中构建强化门实现对遗忘信息的提取,并与记忆信息按比例选取、融合、输入记忆单元,增加学习过程中的梯度传导能力,使网络对相对较远的信息保持敏感以提升记忆能力。实验采用工业故障数据,当序列长度超过100时,具有强化门机制的改进模型预测误差低于其他LSTM模型。预测精度的差距随序列增加而增大,当序列长度增至200时,改进模型的预测误差(RMSE/MAE)较原模型分别降低了26.98%与35.85%。