计算机工程与应用 ›› 2021, Vol. 57 ›› Issue (13): 193-198.DOI: 10.3778/j.issn.1002-8331.2004-0240
罗敦浪,蒋旻,袁琳君,江佳俊,郭嘉
LUO Dunlang, JIANG Min, YUAN Linjun, JIANG Jiajun, GUO Jia
摘要:
随着多媒体技术的发展,诸如黑白照片着色、医学影像渲染和手绘图上色等各种图像着色应用需求逐渐增多。传统着色算法大部分存在着色模式单一、在处理部分数据时着色效果不佳或者依赖人工输入信息等缺点,对此,设计了一种条件生成对抗网络和颜色分布预测模型相结合的图像着色方法。由生成对抗网络生成着色图像,并通过预测模型的预测值来对生成器的生成的着色图像做出校正,改善了生成对抗网络生成图像颜色容易趋向单一化的问题。最后通过引入一个色彩对比度损失,进一步提升了算法在某些对比度较小的分类图像上的着色质量。通过在ImageNet数据集上的多组对比实验表明,与其他传统方法相比,该方法在更多的图像分类上有着更出色的着色效果。