计算机工程与应用 ›› 2021, Vol. 57 ›› Issue (6): 207-211.DOI: 10.3778/j.issn.1002-8331.2004-0146
徐建国,刘泳慧,刘梦凡
XU Jianguo, LIU Yonghui, LIU Mengfan
摘要:
采用融合自注意力机制的双向长短期记忆模型(SelfAtt-BILSTM)和条件随机场模型(CRF),构建一种SelfAtt-BILSTM-CRF模型,对政策文本进行语义角色标注,以提取政策主要内容。采用某高校政策文件为实验数据集,利用BILSTM模型自动学习序列化语句上下文特征,融合自注意力机制增加重要特征元素的权重,通过CRF层利用特征进行序列标注,提取语义角色,以实现政策文件的主要内容挖掘。经过对比验证,该模型能够有效地提取政策文本内容,在标注数据集上F1值达到78.99%。实验结果同时表明,自注意力机制能够有效提高神经网络模型的语义角色标注效果。