计算机工程与应用 ›› 2020, Vol. 56 ›› Issue (4): 140-145.DOI: 10.3778/j.issn.1002-8331.1811-0020
刘小安,彭涛
LIU Xiaoan, PENG Tao
摘要:
命名实体识别是自然语言处理任务的重要环节。近年来,基于深度学习的通用命名实体识别模型取得显著效果。而在旅游领域,中文旅游景点实体识别主要依赖于特征工程的方法。提出一种基于CNN-BiLSTM-CRF的网络模型,该模型不使用任何人工特征,通过神经网络充分对文本的局部信息特征进行抽象化抽取和表示,并学习和利用文本的上下文信息,实现对景点实体的识别。实验结果显示,该方法能够有效识别中文旅游景点实体,并在实验中取得[F1]值93.9%的效果。