计算机工程与应用 ›› 2019, Vol. 55 ›› Issue (3): 133-139.DOI: 10.3778/j.issn.1002-8331.1710-0236
王 琳1,卫 晨2,李伟山1,张钰良2
WANG Lin1, WEI Chen2, LI Weishan1, ZHANG Yuliang2
摘要: 煤矿井下的行人检测对于保障井下作业人员的安全至关重要。煤矿井下光照暗、粉尘大,直接用YOLOv2检测井下行人,准确率低,仅达到54.3%。针对此问题,以YOLOv2网络为基础,结合了金字塔场景解析网络(PSPnet)中的金字塔池化模块,充分利用图片的上下文信息,提出了YOLOv2_PPM网络。在井下行人检测数据集上进行实验,YOLOv2_PPM网络的准确率提升到63.5%,较YOLOv2网络增加了9.2%,且速度达到了39?帧/s(FPS)。当输入图片的大小为480×480时,检测的准确率提升到71.6%,同时速度为28?帧/s,满足了实时检测的要求。