计算机工程与应用 ›› 2018, Vol. 54 ›› Issue (4): 199-204.DOI: 10.3778/j.issn.1002-8331.1709-0155
马红强,马时平,许悦雷,吕 超,辛 鹏,朱明明
MA Hongqiang, MA Shiping, XU Yuelei, LV Chao, XIN Peng, ZHU Mingming
摘要: 为了提高栈式稀疏去噪自编码器(SSDA)的图像去噪性能,解决计算复杂度高,参数不易调节,训练收敛速度慢等问题,提出了一种栈式边缘化稀疏去噪自编码器(SMSDA)的图像去噪方法。首先,由于边缘化去噪自编码器(MDA)具有收敛速度快这一特性,对SDA网络损失函数作边缘化处理,形成边缘化稀疏去噪自编码器(MSDA),使其同时满足边缘性和稀疏性。其次,将多个MSDA堆叠构成深度神经网SMSDA,为避免模型参数局部最优,采用非监督逐层训练法分别训练每一层网络,再用BP算法对整个网络微调,从而获得最优权重。最后,用SMSDA对给定图像去噪。仿真结果表明,较SSDA而言,所提算法在降低计算复杂度、提高收敛速度的同时,拥有较高峰值信噪比(PSNR),且保留了更多原始图像的细节信息,具有更好的降噪性能。