计算机工程与应用 ›› 2007, Vol. 43 ›› Issue (4): 243-248.

• 工程与应用 • 上一篇    

ROC分析技术在机器学习中的应用

张晓龙 江川 骆名剑   

  1. 武汉科技大学计算机科学与技术学院 武汉科技大学计算机学院 武汉科技大学计算机学院
  • 收稿日期:2006-01-24 修回日期:1900-01-01 出版日期:2007-02-01 发布日期:2007-02-01
  • 通讯作者: 江川

The Application Of The ROC Analysis In Machine Learning

XiaoLong Zhang   

  • Received:2006-01-24 Revised:1900-01-01 Online:2007-02-01 Published:2007-02-01

摘要: ROC(受试者工作特征)分析技术是一种用来衡量分类算法和图示它们性能的技术.与传统的正确率相比,ROC分析更能够全面的描述分类算法的分类性能.该方法具有可信度高,描述客观精确,特别是不受数据环境影响等优势.本文对国内外这一方法的研究成果进行了较为系统的介绍,详细分析了它的优缺点,最后对这一技术的发展进行了展望.

关键词: ROC分析, 机器学习, 分类算法, 正确率

Abstract: Receiver Operating Characteristics (ROC) analysis is a technique for organizing classifiers and visualizing their performance. Comparing with general accuracy, ROC could describe the classify capability adequately and be adopted in all conditions. This method has many characteristic such as high reliability, object and accurate describe and especially it cannot be influenced by the data environment. In this paper, we systematically discuss the research achievement and introduce the advantages and shortcomings about ROC analysis. In the end we look forward to its development.

Key words: ROC analysis, Machine Learning, Classifier, Accuracy