计算机工程与应用 ›› 2007, Vol. 43 ›› Issue (10): 48-51.

• 学术探讨 • 上一篇    下一篇

纳什均衡解及其QPSO算法求解

于敏 须文波 孙俊   

  1. 江南大学信息学院 江南大学通信与控制工程学院 江南大学信息工程学院
  • 收稿日期:2006-08-11 修回日期:1900-01-01 出版日期:2007-04-01 发布日期:2007-04-01
  • 通讯作者: 于敏

Nash equilibria and quantum-behaved particle swarm optimization

  • Received:2006-08-11 Revised:1900-01-01 Online:2007-04-01 Published:2007-04-01

摘要: 纳什均衡是一种博弈的解的概念,可以对非常广泛类型的博弈作出严格的多的预测。具有量子行为的粒子群算法是一种能够较好的解决优化问题的算法,它是在粒子群算法的基础上发展起来的。本文讨论纳什均衡解,并利用QPSO算法来求解纳什均衡解。通过仿真算法及与几种算法的比较结果验证了算法的有效性,证明了算法的全局收敛性。

关键词: 扩展技术, 排斥技术, 博弈, 具有量子行为的粒子群算法, 纳什均衡

Abstract: Nash equilibrium is one kind of game solution concept, may make the strict many forecasts to extremely widespread type game.Quantum-behaved particle swarm optimization is introduced and presented based on the analysis of Particle swarm optimization. In this paper,the nash equilibrium solution is discussed and given by using QPSO. According to the simulation testing and the comparision with several algorithm was verified and the global convergence property of the algorithm was proved.

Key words: stretching technique, repulsion technique, game, quantum-behaved particle swarm optimization, nash equilibrium