[1] MURAT F, YILDIRIM O, TALO M, et al. Application of deep learning techniques for heartbeats detection using ECG signals-analysis and review[J]. Computers in Biology and Medicine, 2020, 120: 103726.
[2] 来春林. 心律失常学[M]. 北京: 科学技术文献出版社, 2011: 11-24.
LAI C L. Arrhythmology[M]. Beijing: Scientific and Technical Documentation Press, 2011: 11-24.
[3] 黄宛. 临床心电图学[M]. 北京: 人民卫生出版社, 1998.
HUANG W. Clinical electrocardiography[M].?Beijing: People’s Medical Publishing House (PRC), 1998.
[4] KOTALCZYK A. The 2020 ESC guidelines on the diagnosis and management of atrial fibrillation [J]. Arrhythmia & Electrophysiology Review, 2021, 10(2): 65.
[5] ACC/AHA/ESC guidelines for the management of patients with supraventricular arrhythmias—executive summary: a report of the American college of cardiology/American heart association task force on practice guidelines and the European society of cardiology[J]. Journal of the American College of Cardiology, 2003, 42(8): 1493-1531.
[6] CHARLE A. Effectiveness of bLCENded learning versus lectures alone on ECG analysis and interpretation by medical students[J]. BioMed Central, 2020(1).
[7] KWON J, KIM K. Artificial intelligence for early prediction of pulmonary hypertension using electrocardiography-sciencedirect[J]. The Journal of Heart and Lung Transplantation, 2020, 39(8): 805-814.
[8] FAN X M, YAO Q H, CAI Y P, et al. Multiscaled fusion of deep convolutional neural networks for screening atrial fibrillation from single lead short ECG recordings[J]. IEEE Journal of Biomedical and Health Informatics, 2018, 22(6): 1744-1753.
[9] HANNUN Y, RAJPURKAR P, HAGHPANAHI M, et al. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network[J]. Nature Medicine, 2019, 25(1): 65-69.
[10] LIU P, SUN X, HAN Y, et al. Arrhythmia classification of LSTM autoencoder based on time series anomaly detection[J]. Biomedical Signal Processing and Control, 2022, 71: 103228.
[11] LIANG Y, ZHANG L, JIANG X, et al. Arrhythmia classification on different time windows using CSR-BiGRU network[C]//Proceedings of the 2022 15th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), 2022: 1-7.
[12] ZHAO Y, REN J, ZHANG B, et al. An explainable attention-based TCN heartbeats classification model for arrhythmia detection[J]. Biomedical Signal Processing and Control, 2023, 80: 104337.
[13] ANDAYESHGAR B, ABDALI-MOHAMMADI F, SEPAHVAND M, et al. Developing graph convolutional networks and mutual information for arrhythmic diagnosis based on multichannel ECG signals[J]. International Journal of Environmental Research and Public Health, 2022, 19(17): 10707.
[14] HUANG J, CHEN B, YAO B, et al. ECG arrhythmia classification using STFT-based spectrogram and convolutional neural network[J]. IEEE Access, 2019, 7: 92871-92880.
[15] KUMAR M A, CHAKRAPANI A. Classification of ECG signal using FFT based improved Alexnet classifier[J]. PLOS One, 2022, 17(9): e0274225.
[16] 曹细武, 邓亲恺. 心电图各波的频率分析[J]. 中国医学物理学杂志, 2001, 18(1): 46-48.
CAO X W, DENG Q K. Frequency analysis on the ECG waveform[J]. Chinese Journal of Medical Physics, 2001, 18(1): 46-48.
[17] LI Q, RAJAGOPALAN C, CLIFFORD G D. Ventricular fibrillation and tachycardia classification using a machine learning approach[J]. IEEE Transactions on Biomedical Engineering, 2013, 61(6): 1607-1613.
[18] HASEENA H H, MATHEW A T, PAUL J K. Fuzzy clustered probabilistic and multi layered feed forward neural networks for electrocardiogram arrhythmia classification[J]. Journal of Medical Systems, 2011, 35: 179-188.
[19] ZHANG Z, DONG J, LUO X, et al. Heartbeat classification using disease-specific feature selection[J]. Computers in Biology and Medicine, 2014, 46: 79-89.
[20] ?ZBAY Y. A new approach to detection of ECG arrhythmias: complex discrete wavelet transform based complex valued artificial neural network[J]. Journal of Medical Systems, 2009, 33(6): 435-445.
[21] GUPTA V, RATHORE N S, ARORA A K, et al. Electrocardiogram signal pattern recognition using PCA and ICA on different databases for improved health management[J]. International Journal of Applied Pattern Recognition, 2022, 7(1): 41-63.
[22] ROLAND G, PADHI S N, KAYALVILI S, et al. An automated system for arrhythmia detection using ECG records from MITDB[C]//Proceedings of the 2022 International Conference on Automation, Computing and Renewable Systems (ICACRS), 2022: 26-33.
[23] KIRANYAZ S, INCE T, HAMILA R, et al. Convolutional neural networks for patient-specific ECG classification[C]//Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2015: 2608-2611.
[24] AL RAHHAL M M, BAZI Y, AL ZUAIR M, et al. Convolutional neural networks for electrocardiogram classification[J]. Journal of Medical and Biological Engineering, 2018, 38: 1014-1025.
[25] CHEN T M, HUANG C H, SHIH E S C, et al. Detection and classification of cardiac arrhythmias by a challenge-best deep learning neural network model[J]. IScience, 2020, 23(3): 100886.
[26] LIU F, LIU C, ZHAO L, et al. An open access database for evaluating the algorithms of electrocardiogram rhythm and morphology abnormality detection[J]. Journal of Medical Imaging and Health Informatics, 2018, 8(7): 1368-1373.
[27] ZHANG J, LIANG D, LIU A, et al. MLBF-Net: a multi-lead-branch fusion network for multi-class arrhythmia classification using 12-Lead ECG[J]. IEEE Journal of Translational Engineering in Health and Medicine, 2021, 9: 1-11.
[28] ZHU J, SUN L, WANG Y, et al. A ResNet based multiscale feature extraction for classifying multi-variate medical time series[J]. KSII Transactions on Internet & Information Systems, 2022, 16(5): 1431-1445.
[29] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141.
[30] LOUREN?O A, SILVA H, LEITE P, et al. Real time electrocardiogram segmentation for finger based ECG biometrics[C]//Proceedings of the International Conference on Bio-inspired Systems and Signal Processing, 2012: 49-54.
[31] DEFFERRARD M, BRESSON X, VANDERGHEYNST P. Convolutional neural networks on graphs with fast localized spectral filtering[C]//Advances in Neural Information Processing Systems, 2016.
[32] ZHANG J W, ZHANG J M, DANIOKO S, et al. A 12-lead electrocardiogram database for arrhythmia research covering more than 10, 000 patients[J]. Scientific Data, 2020, 7(1): 48.
[33] JANUARY C T, WANN L S, ALPERT J S, et al. 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: executive summary: a report of the American college of cardiology/american heart association task force on practice guidelines and the heart rhythm society[J]. Circulation, 2014, 130(23): 2071-2104.
[34] SHANKAR M G, BABU C G, RAJAGURU H. Classification of cardiac diseases from ECG signals through bio inspired classifiers with Adam and R-Adam approaches for hyperparameters updation[J]. Measurement, 2022, 194: 111048.
[35] MEQDAD M N, ABDALI-MOHAMMADI F, KADRY S. Meta structural learning algorithm with interpretable convolutional neural networks for arrhythmia detection of multisession ECG[J]. IEEE Access, 2022, 10: 61410-61425.
[36] KANG J, WEN H. A study on several critical problems on arrhythmia detection using varying-dimensional electrocardiography[J]. Physiological Measurement, 2022, 43(6): 064007.
[37] RAHUL J, SHARMA L D. Automatic cardiac arrhythmia classification based on hybrid 1-D CNN and Bi-LSTM model[J]. Biocybernetics and Biomedical Engineering, 2022, 42(1): 312-324. |