计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (3): 212-222.DOI: 10.3778/j.issn.1002-8331.2309-0401

• 模式识别与人工智能 • 上一篇    下一篇

嵌入导联上下文编码的图卷积神经网络心律失常分类模型

喻云虎,杨湘,陈艳红   

  1. 1.武汉科技大学 计算机科学与技术学院,武汉 430065
    2.国家新闻出版署 富媒体数字出版内容组织与知识服务重点实验室,北京 100038
    3.武汉亚洲心脏病医院 心血管内科,武汉 430022
  • 出版日期:2025-02-01 发布日期:2025-01-24

Lead Context Encoding Embedded GCN for Arrhythmia Classification

YU Yunhu, YANG Xiang, CHEN Yanhong   

  1. 1.School of Computer Science and Technology, Wuhan University of Science and Technology, Wuhan 430065, China
    2.The Key Laboratory of Rich-Media Knowledge Organization and Service of Digital Publishing Content Institute of Scientific and Technical Information of China, Beijing 100038, China
    3.Internal Medicine-Cardiovascular Department, Wuhan Asia Heart Hospital, Wuhan 430022, China
  • Online:2025-02-01 Published:2025-01-24

摘要: 心律失常对患者健康造成严重威胁,其通过12导联心电图(electrocardiogram,ECG)的自动分类在临床上具有重要意义。现有研究偏重两两导联之间的相关性,忽视多导联上下文及频域特征,这导致了分析的局限性,且易受噪声干扰,影响分类准确性。该研究提出了嵌入导联上下文编码的图卷积神经网络心律失常分类模型(lead context encoding embedded graph convolutional neural network model for arrhythmia classification,LCEE-GCN)。该模型利用短时傅里叶变换获取12导联心电信号的功率谱密度(power spectral density,PSD),并运用ECG信号处理算法提取R-R间期等时域特征,通过导联上下文编码获得导联间更广泛的相关性信息,并结合PSD与时域特征构建动态图结构,利用图卷积神经网络增强模型对导联间关系的学习与表示能力。在查普曼数据集上进行的实验表明,模型达到了99.38%的准确率,超过了现有先进方法。这一创新有望提高心律失常诊断的效率和准确性。

关键词: 心律失常分类, 12导联心电图, 图卷积神经网络, 功率谱密度, 导联上下文编码

Abstract: Arrhythmia poses a serious threat to patients’health, and its automatic classification through 12-lead electrocardiograms (ECG) is of significant clinical importance. Current research has focused on the correlation between pairs of leads while overlooking the multi-lead context and frequency domain features. This has resulted in limitations in analysis and susceptibility to noise interference, affecting classification accuracy. This study introduces a graph convolutional neural network (GCN) model for arrhythmia classification that embeds lead context encoding, known as the lead context encoding embedded graph convolutional neural network model for arrhythmia classification (LCEE-GCN). Firstly, it utilizes short-time Fourier transformation to obtain the power spectral density (PSD) of the 12-lead ECG signals, and applies ECG signal processing algorithms to extract time-domain features such as R-R intervals. Then, it acquires more extensive inter-lead correlation information through lead context encoding and combines it with PSD to construct a dynamic graph structure. Finally, the model uses graph convolutional neural networks to enhance its ability to learn and represent relationships between leads. Experimental results conducted on the Chapman dataset show that the model achieves an accuracy of 99.38%, surpassing existing state-of-the-art methods. This innovation holds the potential to improve the efficiency and accuracy of arrhythmia diagnosis.

Key words: arrhythmia classification, 12-lead ECG, graph convolutional neural network (GCN), power spectral density (PSD), lead context encoding