[1] 赫捷, 陈万青, 李兆申, 等. 中国食管癌筛查与早诊早治指南(2022, 北京)[J]. 中国肿瘤, 2022, 31(6): 401-436.
HE J, CHEN W Q, LI Z S, et al. China guideline for the screening, early detection and early treatment of esophageal cancer(2022, Beijing)[J]. China Cancer, 2022, 31(6): 401-436.
[2] 宋颂, 雷林, 张瑞, 等. 食管癌筛查的研究进展[J]. 中华肿瘤防治杂志, 2022, 29(7): 451-455.
SONG S, LEI L, ZHANG R, et al. Research progress on screening for esophageal cancer[J]. Chinese Journal of Cancer Prevention and Treatment, 2022, 29(7): 451-455.
[3] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2015: 234-241.
[4] 崔珂, 田启川, 廉露. 基于U-Net变体的医学图像分割算法综述[J]. 计算机工程与应用, 2024, 60(11): 32-49.
CUI K, TIAN Q C, LIAN L. Review of medical image segmentation algorithms based on U-Net variants[J]. Computer Engineering and Applications, 2024, 60(11): 32-49.
[5] FANG Y J, MUKUNDAN A, TSAO Y M, et al. Identification of early esophageal cancer by semantic segmentation[J]. Journal of Personalized Medicine, 2022, 12(8): 1204.
[6] ZHOU Z W, SIDDIQUEE M M R, TAJBAKHSH N, et al. UNet: redesigning skip connections to exploit multiscale features in image segmentation[J]. IEEE Transactions on Medical Imaging, 2020, 39(6): 1856-1867.
[7] GU Z W, CHENG J, FU H Z, et al. CE-net: context encoder network for 2D medical image segmentation[J]. IEEE Transactions on Medical Imaging, 2019, 38(10): 2281-2292.
[8] CAO H, WANG Y Y, CHEN J, et al. Swin-Unet: Unet-like pure transformer for medical image segmentation[C]//Proceedings of the 17th European Conference on Computer Vision. Cham: Springer, 2022: 205-218.
[9] LIU Z, LIN Y T, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2022: 9992-10002.
[10] CHEN J N, LU Y Y, YU Q H, et al. TransUNet: transformers make strong encoders for medical image segmentation[J]. arXiv:2102,04306, 2021.
[11] ZHANG Y D, LIU H Y, HU Q. TransFuse: fusing transformers and CNNs for medical image segmentation[C]//Proceedings of the 24th International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2021: 14-24.
[12] WANG W H, XIE E Z, LI X, et al. Pyramid vision transformer: a versatile backbone for dense prediction without convolutions[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2022: 548-558.
[13] WANG J F, HUANG Q M, TANG F L, et al. Stepwise feature fusion: local guides global[C]//Proceedings of the 25th International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2022: 110-120.
[14] SANDERSON E, MATUSZEWSKI B J. FCN-transformer feature fusion for polyp segmentation[C]//Proceedings of the 26th Annual Conference on Medical Image Understanding and Analysis. Cham: Springer, 2022: 892-907.
[15] JHA D, SMEDSRUD P H, RIEGLER M A, et al. Kvasir-SEG: a segmented polyp dataset[C]//Proceedings of the 26th International Conference on MultiMedia Modeling. Cham: Springer, 2020: 451-462.
[16] BERNAL J, SáNCHEZ F J, FERNáNDEZ-ESPARRACH G, et al. WM-DOVA maps for accurate polyp highlighting in colonoscopy: validation vs. saliency maps from physicians[J]. Computerized Medical Imaging and Graphics, 2015, 43: 99-111.
[17] CODELLA N C F, GUTMAN D, CELEBI M E, et al. Skin lesion analysis toward melanoma detection: a challenge at the 2017 international symposium on biomedical imaging (ISBI), hosted by the international skin imaging collaboration (ISIC)[C]//Proceedings of the 2018 IEEE 15th International Symposium on Biomedical Imaging. Piscataway: IEEE, 2018: 168-172.
[18] HUANG X H, DENG Z F, LI D D, et al. MISSFormer: an effective transformer for 2D medical image segmentation[J]. IEEE Transactions on Medical Imaging, 2023, 42(5): 1484-1494.
[19] AZAD R, HEIDARI M, SHARIATNIA M, et al. TransDeepLab: convolution-free transformer-based DeepLab v3+ for medical image segmentation[C]//Proceedings of the 5th International Workshop on Predictive Intelligence in Medicine. Cham: Springer, 2022: 91-102.
[20] RUAN J C, LI J C, XIANG S C. VM-UNet: vision mamba UNet for medical image segmentation[J]. arXiv:2402.02491, 2024.
[21] RAHMAN M M, SHOKOUHMAND S, BHATT S, et al. MIST: medical image segmentation transformer with convolutional attention mixing (CAM) decoder[C]//Proceedings of the 2024 IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2024: 403-412.
[22] RAHMAN M M, MARCULESCU R. Multi-scale hierarchical vision transformer with cascaded attention decoding for medical image segmentation[C]//Proceedings of the 3rd International Conference on Medical Imaging with Deep Learning, 2023: 1526-1544. |