[1] HAFIZ A M, BHAT G M. A survey on instance segmentation: state of the art[J]. International Journal of Multimedia Information Retrieval, 2020, 9(3): 171-189.
[2] SHARMA R, SAQIB M, LIN C T, et al. A survey on object instance segmentation[J]. SN Computer Science, 2022, 3(6): 499.
[3] ZHANG Y, YANG Q. A survey on multi-task learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(12): 5586-5609.
[4] LING Y T, WANG Y L, DAI W L, et al. MTANet: multi-task attention network for automatic medical image segmentation and classification[J]. IEEE Transactions on Medical Imaging, 2024, 43(2): 674-685.
[5] 张宇, 温光照, 米思娅, 等. 基于深度学习的二维人体姿态估计综述[J]. 软件学报, 2022, 33(11): 4173-4191.
ZHANG Y, WEN G Z, MI S Y, et al. Overview on 2D human pose estimation based on deep learning[J]. Journal of Software, 2022, 33(11): 4173-4191.
[6] TOSHEV A, SZEGEDY C. DeepPose: human pose estimation via deep neural networks[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014: 1653-1660.
[7] ZHENG C, WU W H, CHEN C, et al. Deep learning-based human pose estimation: a survey[J]. ACM Computing Surveys, 2024, 56(1): 1-37.
[8] 邓益侬, 罗健欣, 金凤林. 基于深度学习的人体姿态估计方法综述[J]. 计算机工程与应用, 2019, 55(19): 22-42.
DENG Y N, LUO J X, JIN F L. Overview of human pose estimation methods based on deep learning[J]. Computer Engineering and Applications, 2019, 55(19): 22-42.
[9] FANG H S, XIE S Q, TAI Y W, et al. RMPE: regional multi-person pose estimation[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2353-2362.
[10] HE K M, GKIOXARI G, DOLLáR P, et al. Mask R-CNN[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2980-2988.
[11] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[12] SUN K, XIAO B, LIU D, et al. Deep high-resolution representation learning for human pose estimation[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 5686-5696.
[13] PISHCHULIN L, INSAFUTDINOV E, TANG S Y, et al. DeepCut: joint subset partition and labeling for multi person pose estimation[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 4929-4937.
[14] CAO Z, HIDALGO G, SIMON T, et al. OpenPose: realtime multi-person 2D pose estimation using part affinity fields[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(1): 172-186.
[15] NEWELL A, YANG K Y, DENG J. Stacked hourglass networks for human pose estimation[C]//Proceedings of the 14th European Conference on Computer Vision. Cham: Springer, 2016: 483-499.
[16] BIN Y R, CAO X, CHEN X Y, et al. Adversarial semantic data augmentation for human pose estimation[C]//Proceedings of the 16th European Conference on Computer Vision. Cham: Springer, 2020: 606-622.
[17] KRICHEN M. Generative adversarial networks[C]//Proceedings of the 2023 14th International Conference on Computing Communication and Networking Technologies. Piscataway: IEEE, 2023: 1-7.
[18] NIE X C, FENG J S, ZUO Y M, et al. Human pose estimation with parsing induced learner[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 2100-2108.
[19] 徐佳. 复杂场景下的人体姿态估计算法研究[D]. 北京: 北京交通大学, 2022.
XU J. Research of human pose estimation algorithm in complex scenarios[D]. Beijing: Beijing Jiaotong University, 2022.
[20] SUBARNA T, MAXWELL C, MATTHEW B, et al. Pose2-instance: Harnessing key-points for person instance segmentation[J].arXiv:1704.01152, 2017.
[21] PAPANDREOU G, ZHU T, CHEN L C, et al. PersonLab: person pose estimation and instance segmentation with a bottom-up, part-based, geometric embedding model[C]// Proceedings of the 15th European Conference on Computer Vision. Cham: Springer, 2018: 282-299.
[22] ZHANG S H, LI R L, DONG X, et al. Pose2Seg: detection free human instance segmentation[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 889-898.
[23] QIN X B, ZHANG Z C, HUANG C Y, et al. U2-Net: going deeper with nested U-structure for salient object detection[J]. Pattern Recognition, 2020, 106: 107404.
[24] CHENG B W, XIAO B, WANG J D, et al. HigherHRNet: scale-aware representation learning for bottom-up human pose estimation[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 5385-5394.
[25] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[[C]//Proceedings of the 13th European Conference on Computer Vision. Cham: Springer International Publishing, 2014: 740-755.
[26] CHEN L C, ZHU Y K, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of the 13th European Conference on Computer Vision. Cham: Springer International Publishing, 2018: 833-851.
[27] KREISS S, BERTONI L, ALAHI A. PifPaf: composite fields for human pose estimation[J]. arXiv:1903.06593, 2019.
[28] NEWELL A, HUANG Z A, DENG J. Associative embedding: end-to-end learning for joint detection and grouping[J]. arXiv:1611.05424, 2016.
[29] CHNG Y X, ZHENG H, HAN Y Z, et al. Mask grounding for referring image segmentation[J]. arXiv:2312.12198, 2023.
[30] YANG Y C, QIAO Y, SUN X. Mask as supervision: leveraging unified mask information for unsupervised 3D pose estimation[J]. arXiv:2312.07051, 2023.
[31] RAFI U, DOERING A, LEIBE B, et al. Self-supervised keypoint correspondences for multi-person pose estimation and tracking in videos[C]//Proceedings of the 16th European Conference on Computer Vision. Cham: Springer, 2020: 36-52. |