计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (20): 206-217.DOI: 10.3778/j.issn.1002-8331.2406-0365

• 模式识别与人工智能 • 上一篇    下一篇

基于稀疏与低秩联合表示的多样性多视图子空间聚类

赵悦,胡良臣,杨影,阮芷萱,杜同春,接标,罗永龙   

  1. 1.安徽师范大学 计算机与信息学院,安徽 芜湖 241002
    2.工业智能数据安全安徽省重点实验室,安徽 芜湖 241002
  • 出版日期:2025-10-15 发布日期:2025-10-15

Diversity-Aware Multi-View Subspace Clustering Based on Sparse and Low-Rank Joint Representation

ZHAO Yue, HU Liangchen, YANG Ying, RUAN Zhixuan, DU Tongchun, JIE Biao, LUO Yonglong   

  1. 1.School of Computer and Information, Anhui Normal University, Wuhu, Anhui 241002, China
    2.Anhui Provincial Key Laboratory of Industrial Intelligent Data Security, Wuhu, Anhui 241002, China
  • Online:2025-10-15 Published:2025-10-15

摘要: 现有的大多数多视图子空间聚类(multi-view subspace clustering,MVSC)算法着重于视图之间的一致性,却忽略了视图之间的多样性,同时也未充分考虑多视图局部结构中的丰富信息,导致多视图信息挖掘不充分,聚类结果不理想。针对这一问题,提出了一种基于稀疏与低秩联合表示的多样性多视图子空间聚类算法。通过共同自表示,视图间的一致性和多样性得以抽取。在实验中,与八种算法进行了比较,并在五个数据集上进行了评估。评价指标包括归一化互信息(normalized mutual information,NMI)、调整兰德指数(adjusted Rand index,ARI)、准确率(accuracy,ACC)和纯度(purity,PUR)。在五个数据集上,提出算法的效果在四个指标上均属于最优。此外,时间成本分析表明该算法与其他算法具有相当的水平,而消融实验证明了视图间一致性和多样性刻画方式的重要性,且该算法在五个数据集上均具备良好的收敛性。实验结果表明,相比于现存相关方法,该方法展现出一定的优越性。

关键词: 多视图聚类, 一致性与多样性, 稀疏表示, 低秩表示, 流形结构

Abstract: Most multi-view subspace clustering methods only consider the consistency among multi-views, thus ignoring the diversity among multi-views. At the same time, it does not take into account the rich information in the local structure of multi-views, the sparse and low-rank characteristics of multi-views, and the cross-view commonality and inconsistency in subspace representations, resulting in insufficient multi-view information mining and unsatisfactory clustering results. For this purpose, this paper proposes a diversity-aware multi-view subspace clustering based on sparse and low-rank joint representation algorithm. Through common self representation, consistency and diversity between views can be extracted. In the experiment, eight algorithms are compared and evaluated on five datasets. The evaluation indicators include normalized mutual information (NMI), adjusted Rand index (ARI), accuracy (ACC), and purity (PUR). On the five datasets, the performance of the algorithm proposed in this paper is optimal on all four indicators. In addition, the analysis of time costs indicates that the algorithm proposed in this study has a comparable level of computational cost compared to other algorithms. Ablation experiments have demonstrated the importance of depicting consistency and diversity between views, and this algorithm exhibits good convergence on all five datasets. The experimental results show that compared to existing relevant methods, this method exhibits certain advantages.

Key words: multi-view clustering, consistency and diversity, sparse constraints, low-rank constraint, manifold structure