[1] CHAO G, SUN S, BI J. A survey on multi-view clustering[J]. IEEE Transactions on Artificial Intelligence, 2021, 2(2): 146-168.
[2] 王晶. 多视图子空间聚类方法研究[D]. 绵阳: 西南科技大学, 2024.
WANG J. Research on multi-view subspace clustering methods[D]. Mianyang: Southwest University of Science and Technology, 2024.
[3] GAO H C, NIE F P, LI X L, et al. Multi-view subspace clustering[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 4238-4246.
[4] WANG Y, ZHANG W J, WU L, et al. Iterative views agreement: an iterative low-rank based structured optimization method to multi-view spectral clustering[C]//Proceedings of the 25th International Joint Conference on Artificial Intelligence. New York: AAAI, 2016: 2153-2159.
[5] ZHANG C Q, HU Q H, FU H Z, et al. Latent multi-view subspace clustering[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 4333-4341.
[6] BRBI? M, KOPRIVA I. Multi-view low-rank sparse subspace clustering[J]. Pattern Recognition, 2018, 73: 247-258.
[7] LYU J C, KANG Z, WANG B Y, et al. Multi-view subspace clustering via partition fusion[J]. Information Sciences, 2021, 560: 410-423.
[8] WANG X B, GUO X J, LEI Z, et al. Exclusivity-consistency regularized multi-view subspace clustering[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 1-9.
[9] TANG C, ZHU X Z, LIU X W, et al. Learning a joint affinity graph for multiview subspace clustering[J]. IEEE Transactions on Multimedia, 2019, 21(7): 1724-1736.
[10] ZHANG C, FU H, HU Q, et al. Generalized latent multi-view subspace clustering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(1): 86-99.
[11] CAO X C, ZHANG C Q, FU H Z, et al. Diversity-induced multi-view subspace clustering[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 586-594.
[12] 刘浩翰, 杜嘉欣, 李建伏. 两级联合融合的多视图子空间聚类改进算法[J]. 计算机应用与软件, 2023, 40(12): 299-304.
LIU H H, DU J X, LI J F. Improved multi-view subspace clustering algorithm based on two-level joint fusion[J]. Computer Applications and Software, 2023, 40(12): 299-304.
[13] CAI X S, HUANG D, ZHANG G Y, et al. Seeking commonness and inconsistencies: a jointly smoothed approach to multi-view subspace clustering[J]. Information Fusion, 2023, 91: 364-375.
[14] 吴杰, 万源, 刘秋杰. 一致块对角和限定的多视角子空间聚类算法[J]. 计算机科学, 2025, 52(4): 138-146.
WU J, WAN Y, LIU Q J. Multi-view subspace clustering algorithm limited by diagonal sum of uniform blocks[J]. Computer Science, 2025, 52(4): 138-146.
[15] ABAVISANI M, PATEL V M. Deep multimodal subspace clustering networks[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12(6): 1601-1614.
[16] CUI C, REN Y, PU J, et al. Deep multi-view subspace clustering with anchor graph[J]. arXiv:2305.06939, 2023.
[17] ELHAMIFAR E, VIDAL R. Sparse subspace clustering[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2009: 2790-2797.
[18] VIDAL R, FAVARO P. Low rank subspace clustering (LRSC)[J]. Pattern Recognition Letters, 2014, 43: 47-61.
[19] NIE F P, CAI G H, LI J, et al. Auto-weighted multi-view learning for image clustering and semi-supervised classification[J]. IEEE Transactions on Image Processing, 2018, 27(3): 1501-1511.
[20] WANG S W, LIU X W, ZHU X Z, et al. Fast parameter-free multi-view subspace clustering with consensus anchor guidance[J]. IEEE Transactions on Image Processing, 2022, 31: 556-568.
[21] LU T X. Solution of the matrix equation AX?XB=C[J]. Computing, 1986, 37(4): 351-355.
[22] CAI J F, CANDèS E J, SHEN Z W. A singular value thresholding algorithm for matrix completion[J]. SIAM Journal on Optimization, 2010, 20(4): 1956-1982.
[23] WRIGHT S J, NOWAK R D, FIGUEIREDO M A T. Sparse reconstruction by separable approximation[J]. IEEE Transactions on Signal Processing, 2009, 57(7): 2479-2493.
[24] REN Z, SUN Q, WU B, et al. Learning latent low-rank and sparse embedding for robust image feature extraction[J]. IEEE Transactions on Image Processing, 2020, 29(1): 2094-2107.
[25] STREHL A. Cluster ensembles a knowledge reuse framework for combining multiple partitions[J]. The Journal of Machine Learning Research, 2003, 3: 583-617.
[26] HUANG D, WANG C D, PENG H X, et al. Enhanced ensemble clustering via fast propagation of cluster-wise similarities[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51(1): 508-520.
[27] LIU X, ZHU X, LI M, et al. Late fusion incomplete multi-view clustering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(10): 2410-2423.
[28] ZHANG Z, LIU L, SHEN F M, et al. Binary multi-view clustering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(7): 1774-1782.
[29] NG A Y, JORDAN M I, WEISS Y. On spectral clustering: Analysis and an algorithm[C]//Proceedings of the 14th International Conference on Neural Information Processing Systems, 2001: 849-856.
[30] TZORTZIS G, LIKAS A. Kernel-based weighted multi-view clustering[C]//Proceedings of the IEEE 12th International Conference on Data Mining. Piscataway: IEEE, 2012: 675-684.
[31] XIA R K, PAN Y, DU L, et al. Robust multi-view spectral clustering via low-rank and sparse decomposition[J]. IEEE Transactions on Cybernetics, 2022, 52(4): 2467-2476.
[32] LI Y Q, NIE F P, HUANG H, et al. Large-scale multi-view spectral clustering via bipartite graph[J]. Proceedings of the 29th AAAI Conference on Artificial Intelligence, 2015: 2750-2756.
[33] ZHAN K, ZHANG C Q, GUAN J P, et al. Graph learning for multiview clustering[J]. IEEE Transactions on Cybernetics, 2018, 48(10): 2887-2895.
[34] SUN M J, ZHANG P, WANG S W, et al. Scalable multi-view subspace clustering with unified anchors[C]//Proceedings of the 29th ACM International Conference on Multimedia, 2021: 3528-3536. |