计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (16): 324-336.DOI: 10.3778/j.issn.1002-8331.2403-0447

• 工程与应用 • 上一篇    下一篇

无人机影像的玉米植株中心检测模型和方法

邬开俊,白晨帅,杜建军,张红娜,白晓凤   

  1. 1.兰州交通大学 电子与信息工程学院,兰州 730070
    2.北京市农林科学院 信息技术研究中心,数字植物北京市重点实验室,北京 100097
    3.内蒙古民族大学 物理与电子信息学院,内蒙古 通辽 028000
  • 出版日期:2025-08-15 发布日期:2025-08-15

Model and Method of Maize Plant Center Detection Based on UAV Image

WU Kaijun, BAI Chenshuai, DU Jianjun, ZHANG Hongna, BAI Xiaofeng   

  1. 1.School of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
    2.Beijing Key Laboratory of Digital Plants, Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
    3.College of Physics and Electronic Information, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia 028000, China
  • Online:2025-08-15 Published:2025-08-15

摘要: 为了解决无人机航拍图片玉米植株中心检测所面临的诸多挑战,包括植株遮挡、形态多样、光照变化以及视觉混淆等问题,提升检测精度和模型的鲁棒性,开发了一种基于YOLO-TSCAS(YOLO with triplet-attention,saliency-adaptive,and centroid awareness for scenes)模型的玉米植株中心检测算法。该算法通过三重注意力模块、显著性裁剪混合数据增强方法、自适应池化技术和选择性多单元激活函数等技术手段,有效提高了检测精度和鲁棒性。采用三重注意力模块解决目标遮挡和视觉混淆问题,使模型能够更好地关注植株中心区域。采用显著性裁剪混合数据增强方法,在训练过程中引入不同的环境和光照变化,增强了模型对复杂场景的适应能力。结合自适应池化技术提高空间分辨率,有助于捕捉更精细的特征信息,提高检测的准确性。采用选择性多单元激活函数进一步增强了网络的学习能力,使模型能够更好地适应各种场景下的植株中心检测任务。实验结果表明,与现有的YOLOX算法相比,YOLO-TSCAS算法在平均准确率和平均F1值上分别提高了22.73个百分点和0.255,并且平均对数漏检率也显著降低了0.35。与其他流行的检测模型相比,在两类植株中心目标检测精度上也取得了最佳效果。

关键词: 中心检测, 三重注意力模块, 显著性裁剪混合, 自适应池化技术, 选择性多单元

Abstract: In order to solve many challenges faced by maize plant center detection in UAV aerial images, including plant occlusion, morphological diversity, illumination change and visual confusion, and improve detection accuracy and robustness of the model, a maize plant center detection algorithm based on YOLO-TSCAS (YOLO with triplet-attention, saliency-adaptive, and centroid awareness for scenes) model is developed. The algorithm effectively improves the detection accuracy and robustness by means of triple attention module, Saliency_CutMix data enhancement method, adaptive pooling technology and selective multi-unit activation function. The triple attention module is used to solve the problems of object occlusion and visual confusion, so that the model can better focus on the central area of the plant. The Saliency_CutMix data enhancement method is used to introduce different environment and illumination changes during the training process, which increases the adaptability of the model to complex scenes. Combined with adaptive pooling technology, the spatial resolution is improved, which helps to capture finer feature information and improve the accuracy of detection. The selective multi-unit activation function is used to further enhance the learning ability of the network, so that the model can better adapt to the plant center detection task in various scenarios. The experimental results show that compared with the existing YOLOX algorithm, the YOLO-TSCAS algorithm improves the average accuracy and average F1 value by 22.73 percentage points and 0.255 respectively, and the average logarithmic missed detection rate is also significantly reduced by 0.35. Compared with other popular detection models, the best results are achieved in the detection accuracy of the two types of plant center objects.

Key words: center detection, triple attention module, Saliency_CutMix, adaptive pooling technology, selective multi-unit