[1] 张晞, 梁斌, 于淼, 等. 露天矿山无人驾驶运输技术现状及发展趋势研究[J]. 煤炭工程, 2022, 54(6): 132-138.
ZHANG X, LIANG B, YU M, et al. Current situation and development direction of unmanned transportation technology in open pit mines[J]. Coal Engineering, 2022, 54(6): 132-138.
[2] MOOSMANN F, PINK O, STILLER C. Segmentation of 3D LiDAR data in non-flat urban environments using a local convexity criterion[C]//Proceedings of the 2009 IEEE Intelligent Vehicles Symposium. Piscataway: IEEE, 2009: 215-220.
[3] DOUILLARD B, UNDERWOOD J, KUNTZ N, et al. On the segmentation of 3D LiDAR point clouds[C]//Proceedings of the 2011 IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2011: 2798-2805.
[4] ANGUELOV D, TASKARF B, CHATALBASHEV V, et al. Discriminative learning of Markov random fields for segmentation of 3D scan data[C]//Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2005: 169-176.
[5] FISCHLER M A, BOLLES R C. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography[J]. Communications of the ACM, 1981, 24(6): 381-395.
[6] ZERMAS D, IZZAT I, PAPANIKOLOPOULOS N. Fast segmentation of 3D point clouds: a paradigm on LiDAR data for autonomous vehicle applications[C]//Proceedings of the 2017 IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2017: 5067-5073.
[7] LIM H, HWANG S, MYUNG H. ERASOR: egocentric ratio of pseudo occupancy-based dynamic object removal for static 3D point cloud map building[J]. IEEE Robotics and Automation Letters, 2021, 6(2): 2272-2279.
[8] LIM H, OH M, MYUNG H. Patchwork: concentric zone-based region-wise ground segmentation with ground likelihood estimation using a 3D LiDAR sensor[J]. IEEE Robotics and Automation Letters, 2021, 6(4): 6458-6465.
[9] KAMMEL S, PITZER B. Lidar-based lane marker detection and mapping[C]//Proceedings of the 2008 IEEE Intelligent Vehicles Symposium. Piscataway: IEEE, 2008: 1137-1142.
[10] HIMMELSBACH M, HUNDELSHAUSEN F V, WUENSCHE H J. Fast segmentation of 3D point clouds for ground vehicles[C]//Proceedings of the 2010 IEEE Intelligent Vehicles Symposium. Piscataway: IEEE, 2010: 560-565.
[11] 张佩翔, 王奇, 高仁璟, 等. 局部阈值自适应的地面点云分割[J]. 光学精密工程, 2023, 31(17): 2564-2572.
ZHANG P X, WANG Q, GAO R J, et al. Ground point cloud segmentation based on local threshold adaptive method[J]. Optics and Precision Engineering, 2023, 31(17): 2564-2572.
[12] LEE S, LIM H, MYUNG H. Patchwork++: fast and robust ground segmentation solving partial under-segmentation using 3D point cloud[C]//Proceedings of the 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE, 2022: 13276-13283.
[13] MIJIT T, FIRKAT E, YUAN X M, et al. LR-Seg: a ground segmentation method for low-resolution LiDAR point clouds[J]. IEEE Transactions on Intelligent Vehicles, 2024, 9(1): 347-356.
[14] 邹兵, 陈鹏, 刘登洪. 一种基于栅格投影的快速地面点云分割算法[J]. 城市勘测, 2021(3): 112-116.
ZOU B, CHEN P, LIU D H. A fast ground point cloud segmentation algorithm based on grid projection[J]. Urban Geotechnical Investigation & Surveying, 2021(3): 112-116.
[15] 任彬, 崔健源, 李刚, 等. 基于自适应阈值的三维点云分段式去噪方法[J]. 光子学报, 2022, 51(2): 311-324.
REN B, CUI J Y, LI G, et al. A three-dimensional point cloud denoising method based on adaptive threshold[J]. Acta Photonica Sinica, 2022, 51(2): 311-324.
[16] 潘文标, 元文浩. 基于密度划分的云数据分块存储方法仿真[J]. 计算机仿真, 2022, 39(8): 456-459.
PAN W B, YUAN W H. Simulation of cloud data block storage method based on density division[J]. Computer Simulation, 2022, 39(8): 456-459.
[17] 曾清红, 卢德唐. 基于移动最小二乘法的曲线曲面拟合[J]. 工程图学学报, 2004, 25(1): 84-89.
ZENG Q H, LU D T. Curve and surface fitting based on moving least-squares methods[J]. Journal of Engineering Graphics, 2004, 25(1): 84-89.
[18] 左勇, 任阳, 杜志华, 等. 基于LP-RANSAC算法的路面点云快速移除算法[J]. 激光与光电子学进展, 2023, 60(14): 376-381.
ZUO Y, REN Y, DU Z H, et al. Rapid removal algorithm of road surface point cloud based on LP-RANSAC algorithm[J]. Laser & Optoelectronics Progress, 2023, 60(14): 376-381.
[19] 王春阳, 丘文乾, 刘雪莲, 等. 基于平面拟合的地面点云精确分割方法[J]. 吉林大学学报 (工学版), 2023, 53(3): 933-940.
WANG C Y, QIU W Q, LIU X L, et al. Accurate segmentation method of ground point cloud based on plane fitting[J]. Journal of Jilin University (Engineering and Technology Edition), 2023, 53(3): 933-940.
[20] 梅圣明, 黄妙华, 柳子晗, 等. 基于三维激光雷达的复杂场景中地面分割方法[J]. 激光与光电子学进展, 2022, 59(10): 422-429.
MEI S M, HUANG M H, LIU Z H, et al. Ground segmentation method in complex scenes based on three-dimensional LiDAR[J]. Laser & Optoelectronics Progress, 2022, 59(10): 422-429.
[21] 张凯, 于春磊, 赵亚丽, 等. 基于自适应阈值的三维激光点云地面分割算法研究[J]. 汽车工程, 2021, 43(7): 1005-1012.
ZHANG K, YU C L, ZHAO Y L, et al. Research on ground segmentation algorithm based on adaptive thresholds for 3D laser point clouds[J]. Automotive Engineering, 2021, 43(7): 1005-1012.
[22] RUMMELHARD L, PAIGWAR A, NèGRE A, et al. Ground estimation and point cloud segmentation using spatiotemporal conditional random field[C]//Proceedings of the 2017 IEEE Intelligent Vehicles Symposium. Piscataway: IEEE, 2017: 1105-1110.
[23] 李剑宇, 王可智, 王纪凯, 等. 郊区场景下基于LiDAR点云的地面分割[C]//第23届中国系统仿真技术及其应用学术年会会议论文集, 2022: 267-270.
LI J Y, WANG K Z, WANG J K, et al. Ground segmentation based on LiDAR point cloud in suburban scenarios[C]//Proceedings of the 23rd China Annual Conference on System Simulation Technology and Its Application, 2022: 267-270. |