[1] OLIVEIRA R C, SILVA R D S. Artificial intelligence in agriculture: benefits, challenges, and trends[J]. Applied Sciences, 2023, 13(13): 7405.
[2] CHEN F Q, JI X Z, BAI M X, et al. Network analysis of different exogenous hormones on the regulation of deep sowing tolerance in maize seedlings[J]. Frontiers in Plant Science, 2021, 12: 739101.
[3] FAN J H, ZHOU J, WANG B W, et al. Estimation of maize yield and flowering time using multi-temporal UAV-based hyperspectral data[J]. Remote Sensing, 2022, 14(13): 3052.
[4] CHEN S, LIU W H, FENG P Y, et al. Improving spatial disaggregation of crop yield by incorporating machine learning with multisource data: a case study of Chinese maize yield[J]. Remote Sensing, 2022, 14(10): 2340.
[5] YANG Z R, CAO Y B, SHI Y T, et al. Genetic and molecular exploration of maize environmental stress resilience: toward sustainable agriculture[J]. Molecular Plant, 2023, 16(10): 1496-1517.
[6] WU X Y, TONG L, KANG S Z, et al. Combination of suitable planting density and nitrogen rate for high yield maize and their source-sink relationship in Northwest China[J]. Journal of the Science of Food and Agriculture, 2023, 103(11): 5300-5311.
[7] SHEN J N, WANG Q L, ZHAO M, et al. Mapping maize planting densities using unmanned aerial vehicles, multispectral remote sensing, and deep learning technology[J]. Drones, 2024, 8(4): 140.
[8] QIAN B X, HUANG W J, XIE D H, et al. Coupled maize model: a 4D maize growth model based on growing degree days[J]. Computers and Electronics in Agriculture, 2023, 212: 108124.
[9] CHANG Y B, LATHAM J, LICHT M, et al. A data-driven crop model for maize yield prediction[J]. Communications Biology, 2023, 6: 439.
[10] RUIZ A, TRIFUNOVIC S, EUDY D M, et al. Harvest index has increased over the last 50 years of maize breeding[J]. Field Crops Research, 2023, 300: 108991.
[11] SZéLES A, HORVáTH é, SIMON K, et al. Maize production under drought stress: nutrient supply, yield prediction[J]. Plants, 2023, 12(18): 3301.
[12] KIENBAUM L, CORREA ABONDANO M, BLAS R, et al. DeepCob: precise and high-throughput analysis of maize cob geometry using deep learning with an application in genebank phenomics[J]. Plant Methods, 2021, 17(1): 91.
[13] ZHANG W L, WANG J Q, LIU Y X, et al. Deep-learning-based in-field citrus fruit detection and tracking[J]. Horticulture Research, 2022, 9: uhac003.
[14] WEN C J, WU J S, CHEN H R, et al. Wheat spike detection and counting in the field based on SpikeRetinaNet[J]. Frontiers in Plant Science, 2022, 13: 821717.
[15] WANG H J, LIN Y Y, XU X J, et al. A study on long-close distance coordination control strategy for litchi picking[J]. Agronomy, 2022, 12(7): 1520.
[16] TANG Y C, ZHOU H, WANG H J, et al. Fruit detection and positioning technology for a Camellia oleifera C. Abel orchard based on improved YOLOv4-tiny model and binocular stereo vision[J]. Expert Systems with Applications, 2023, 211: 118573.
[17] WU C X, LUO J Y, XIAO Y J. Multi-omics assists genomic prediction of maize yield with machine learning approaches[J]. Molecular Breeding, 2024, 44(2): 14.
[18] DE SáLEIT?O D A H, SHARMA A K, SINGH A, et al. Yield and plant height predictions of irrigated maize through unmanned aerial vehicle in North Florida[J]. Computers and Electronics in Agriculture, 2023, 215: 108374.
[19] KANG J, LIU L T, ZHANG F C, et al. Semantic segmentation model of cotton roots in situ image based on attention mechanism[J]. Computers and Electronics in Agriculture, 2021, 189: 106370.
[20] MEI W Y, WANG H Y, FOUHEY D, et al. Using deep learning and very-high-resolution imagery to map smallholder field boundaries[J]. Remote Sensing, 2022, 14(13): 3046.
[21] XU H, BLONDER B, JODRA M, et al. Automated and accurate segmentation of leaf venation networks via deep learning[J]. New Phytologist, 2021, 229(1): 631-648.
[22] YANG S, ZHENG L H, YANG H J, et al. A synthetic datasets based instance segmentation network for high-throughput soybean pods phenotype investigation[J]. Expert Systems with Applications, 2022, 192: 116403.
[23] GE Z, LIU S T, WANG F, et al. YOLOX: exceeding YOLO series in 2021[J]. arXiv:2107.08430, 2021.
[24] ZHU X K, LYU S C, WANG X, et al. TPH-YOLOv5: improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision Workshops. Piscataway: IEEE, 2021: 2778-2788.
[25] LI C, LI L, JIANG H, et al. YOLOv6: a single-stage object detection framework for industrial applications[J]. arXiv:2209.02976, 2022.
[26] WANG C Y, BOCHKOVSKIY A, LIAO H M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 7464-7475.
[27] LI Y T, FAN Q S, HUANG H S, et al. A modified YOLOv8 detection network for UAV aerial image recognition[J]. Drones, 2023, 7(5): 304.
[28] 张晓勐, 朱德利, 余茂生. 无人机遥感图像中的玉米雄穗轻量化检测模型[J]. 江西农业大学学报, 2022, 44(2): 461-472.
ZHANG X M, ZHU D L, YU M S. Lightweight detection model of maize tassel in UAV remote sensing image[J]. Acta Agriculturae Universitatis Jiangxiensis, 2022, 44(2): 461-472.
[29] 杨蜀秦, 刘江川, 徐可可, 等. 基于改进CenterNet的玉米雄蕊无人机遥感图像识别[J]. 农业机械学报, 2021, 52(9): 206-212.
YANG S Q, LIU J C, XU K K, et al. Improved CenterNet based maize tassel recognition for UAV remote sensing image[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(9): 206-212.
[30] XU B R, CHAI L, ZHANG C L. Research and application on corn crop identification and positioning method based on machine vision[J]. Information Processing in Agriculture, 2023, 10(1): 106-113.
[31] HUQ A, ZERMAS D, BEBIS G. Identification of abnormality in maize plants from UAV images using deep learning approaches[C]//Proceedings of the 18th International Symposium on Visual Computing. Cham: Springer, 2023: 583-596.
[32] 梁胤豪, 陈全, 董彩霞, 等. 基于深度学习和无人机遥感技术的玉米雄穗检测研究[J]. 福建农业学报, 2020, 35(4): 456-464.
LIANG Y H, CHEN Q, DONG C X, et al. Application of deep-learning and UAV for field surveying corn tassel[J]. Fujian Journal of Agricultural Sciences, 2020, 35(4): 456-464.
[33] MOTA-DELFIN C, LóPEZ-CANTE?S G J, LóPEZ-CRUZ I L, et al. Detection and counting of corn plants in the presence of weeds with convolutional neural networks[J]. Remote Sensing, 2022, 14(19): 4892.
[34] KITANO B T, MENDES C C T, GEUS A R, et al. Corn plant counting using deep learning and UAV images[J]. IEEE Geoscience and Remote Sensing Letters, 2019. DOI:10.1109/LGRS.2019.2930549.
[35] LIU Y L, CEN C J, CHE Y P, et al. Detection of maize tassels from UAV RGB imagery with Faster R-CNN[J]. Remote Sensing, 2020, 12(2): 338.
[36] 袁亚哲. 基于无人机图像的玉米植株识别技术研究[D]. 郑州: 河南农业大学, 2019.
YUAN Y Z. Maize plant recognition technology based on UAV images[D]. Zhengzhou: Henan Agricultural University, 2019.
[37] 冯浩, 杨祯婷, 陈浩, 等. 基于无人机多光谱影像的夏玉米SPAD估算模型研究[J]. 农业机械学报, 2022, 53(10): 211-219.
FENG H, YANG Z T, CHEN H, et al. Estimation of summer maize SPAD based on UAV multispectral images[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(10): 211-219.
[38] 高嘉欣. 基于无人机图像的玉米漏苗自动检测方法研究[D]. 大庆: 黑龙江八一农垦大学, 2023.
GAO J X. Research on automatic detection method of maize seedling leakage based on UAV image[D]. Daqing: Heilongjiang Bayi Agricultural University, 2023.
[39] 张新龙. 基于无人机影像的玉米出苗质量评价方法研究[D]. 石河子: 石河子大学, 2022.
ZHANG X L. Study on evaluation method of maize seedling emergence quality based on UAV image[D]. Shihezi: Shihezi University, 2022.
[40] 冯文斌. 基于无人机多光谱遥感的夏玉米长势监测及产量估测[D]. 泰安: 山东农业大学, 2022.
FENG W B. Summer corn growth monitoring and yield estimation by UAV-based multispectral remote sensing[D]. Tai’an: Shandong Agricultural University, 2022.
[41] MISRA D, NALAMADA T, ARASANIPALAI A U, et al. Rotate to attend: convolutional triplet attention module[C]//Proceedings of the 2021 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2021: 3138-3147.
[42] UDDIN A F M, MONIRA M S, SHIN W, et al. SaliencyMix: a saliency guided data augmentation strategy for better regularization[J]. arXiv:2006.01791, 2020.
[43] STERGIOU A, POPPE R. AdaPool: exponential adaptive pooling for information-retaining downsampling[J]. IEEE Transactions on Image Processing, 2022, 32: 251-266.
[44] BISWAS K, KUMAR S, BANERJEE S, et al. SMU: smooth activation function for deep networks using smoothing maximum technique[J]. arXiv:2111.04682, 2021.
[45] HENDRYCKS D, GIMPEL K. Gaussian error linear units (GELUs)[J]. arXiv:1606.08415, 2016. |