计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (16): 116-131.DOI: 10.3778/j.issn.1002-8331.2502-0187

• 理论与研发 • 上一篇    下一篇

环境选择的双种群约束多目标狼群算法

吕莉,杨凌锋,肖人彬,孟振宇,崔志华,王晖   

  1. 1.南昌工程学院 信息工程学院,南昌 330099
    2.江西省水利大数据智能处理与预警技术工程研究中心,南昌 330099
    3.华中科技大学 人工智能与自动化学院,武汉 430074
    4.福建理工大学 人工智能研究所,福州 350118
    5.太原科技大学 计算机科学与技术学院,太原 030024
  • 出版日期:2025-08-15 发布日期:2025-08-15

Multi-Objective Wolf Pack Algorithm for Dual Population Constraints with Environment Selection

LYU Li, YANG Lingfeng, XIAO Renbin, MENG Zhenyu, CUI Zhihua, WANG Hui   

  1. 1.School of Information Engineering, Nanchang Institute of Technology, Nanchang 330099, China
    2.Jiangxi Province Engineering Research Center for Intelligent Processing and Early Warning Technology of Water Conservancy Big Data, Nanchang 330099, China
    3.School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China
    4.Institute of Artificial Intelligence, Fujian University of Technology, Fuzhou 350118, China
    5.School of Computer Science and Technology, Taiyuan University of Science and Technology, Taiyuan 030024, China
  • Online:2025-08-15 Published:2025-08-15

摘要: 针对多目标狼群算法存在的搜索不充分、收敛性不足和多样性欠缺的问题,以及缺少对约束进行处理的问题,提出环境选择的双种群约束多目标狼群算法(multi-objective wolf pack algorithm for dual population constraints with environment selection,DCMOWPA-ES)。引入双种群约束处理方法给种群设置不同的搜索偏好,主种群运用可行性准则优先保留可行解,次种群通过[ε]约束探索不可行区域并将搜索结果传递给主种群,让算法能较好应对复杂的不可行区域,保障算法的可行性;提出维度选择的随机游走策略,使人工狼可自主选择游走方向,提高种群的全局搜索能力;设计精英学习的步长调整机制,人工狼通过向头狼学习的方式提升种群的局部搜索能力,确保算法的收敛性;采用环境选择的狼群更新策略,根据人工狼被支配的情况和所处位置的密度信息对其赋值,选择被支配数少且密度信息小的人工狼作为优秀个体,改善算法的多样性。为验证算法性能,将DCMOWPA-ES与六种新兴约束多目标优化算法在两组约束多目标测试集和汽车侧面碰撞设计问题上进行对比实验。实验结果表明,DCMOWPA-ES算法具备较好的可行性、收敛性和多样性。

关键词: 狼群算法, 双种群约束, 维度选择, 精英学习, 环境选择, 约束多目标优化

Abstract: To address the problems of insufficient search capability, poor convergence, and limited diversity in multi-objective wolf pack algorithms, along with inadequate constraint handling, a multi-objective wolf pack algorithm for dual population constraints with environment selection (DCMOWPA-ES) is proposed. A dual population constraint handling mechanism allocates distinct search preferences, the main population uses the constraint domination principle to prioritize the feasible solutions, and the secondary population explores the infeasible region through [ε] constraint handling approach and passes the search results to the main population, so that the algorithm can better deal with complex infeasible areas and ensure the feasibility of the algorithm. A random walk strategy of dimension selection is proposed, so that the artificial wolf can choose the walking direction independently and improve the global search ability of the population. The step size adjustment mechanism of elite learning is designed, and the artificial wolf improves the local search ability of the population by learning from the head wolf to ensure the convergence of the algorithm. The wolf pack update strategy of environment selection is adopted, and the artificial wolf is assigned a value according to the domination of the artificial wolf and the density information of the location, and the artificial wolf with a small number of domination and small density information is selected as an excellent individual to improve the diversity of the algorithm. To verify the performance of the algorithm, DCMOWPA-ES is compared with six emerging constrained multi-objective optimization algorithms on two constrained multi-objective test sets and the car-side impact design problem. The experimental results show that the DCMOWPA-ES algorithm has good feasibility, convergence and diversity.

Key words: wolf pack algorithm, dual population constraint, dimension selection, elite learning, environment selection, constrained multi-objective optimization