[1] HAN S, SUN X M. Optimizing product design using genetic algorithms and artificial intelligence techniques[J]. IEEE Access, 2024, 12: 151460-151475.
[2] 侯艳, 任丙飞, 滕少华, 等. 带罐约束的多目标短期炼油调度优化研究[J]. 江西师范大学学报 (自然科学版), 2023, 47(3): 307-316.
HOU Y, REN B F, TENG S H, et al. The multi-objective short-term scheduling optimization with charging-tank-switch-overlap constraint in refinery[J]. Journal of Jiangxi Normal University (Natural Science Edition), 2023, 47(3): 307-316.
[3] YU W, LI B Z, JIA H Y, et al. Application of multi-objective genetic algorithm to optimize energy efficiency and thermal comfort in building design[J]. Energy and Buildings, 2015, 88: 135-143.
[4] 曹嘉乐, 杨磊, 田井林, 等. 面向高维多目标优化的双阶段双种群进化算法[J]. 计算机工程与应用, 2024, 60(9): 159-171.
CAO J L, YANG L, TIAN J L, et al. Dual-stage dual-population evolutionary algorithm for many-objective optimization[J]. Computer Engineering and Applications, 2024, 60(9): 159-171.
[5] 梁正平, 王侃, 周倩, 等. 基于进化多任务的稀疏大规模多目标优化[J]. 计算机学报, 2025, 48(2): 358-380.
LIANG Z P, WANG K, ZHOU Q, et al. Evolutionary multi-task for sparse large-scale multi-objective optimization[J]. Chinese Journal of Computers, 2025, 48(2): 358-380.
[6] 赵嘉, 钟劲文, 肖人彬, 等. 随机游走和特殊拥挤距离更新的多模态多目标狼群算法[J/OL]. 计算机工程与应用 [2024-11-07]. https://kns.cnki.net/kcms/detail/11.2127.TP. 20241106.
1618.024.html.
ZHAO J, ZHONG J W, XIAO R B, et al. Multi-modal multi-objective wolf pack algorithm with random walk and special crowding distance update[J/OL]. Computer Engineering and Applications [2024-11-07]. https://kns.cnki.net/kcms/detail/11.2127.TP.20241106.1618.024.html.
[7] 于琨, 张正本, 海本斋. 基于多目标全局约束的任务分配和调度算法[J]. 计算机工程与应用, 2018, 54(8): 55-60.
YU K, ZHANG Z B, HAI B Z. Global constraints for multi-objective based task allocation and scheduling algorithm[J]. Computer Engineering and Applications, 2018, 54(8): 55-60.
[8] QIAO K J, LIANG J, YU K J, et al. Constraints separation based evolutionary multitasking for constrained multi-objective optimization problems[J]. IEEE/CAA Journal of Automatica Sinica, 2024, 11(8): 1819-1835.
[9] WANG B C, LI H X, FENG Y, et al. An adaptive fuzzy penalty method for constrained evolutionary optimization[J]. Information Sciences, 2021, 571: 358-374.
[10] ZOU J, SUN R Q, YANG S X, et al. A dual-population algorithm based on alternative evolution and degeneration for solving constrained multi-objective optimization problems[J]. Information Sciences, 2021, 579: 89-102.
[11] FAN Z, LI W J, CAI X Y, et al. Push and pull search for solving constrained multi-objective optimization problems[J]. Swarm and Evolutionary Computation, 2019, 44: 665-679.
[12] COELLO C A C, PULIDO G T, LECHUGA M S. Handling multiple objectives with particle swarm optimization[J]. IEEE Transactions on Evolutionary Computation, 2004, 8(3): 256-279.
[13] 肖人彬, 陈峙臻. 从群智能优化到群智能进化[J]. 南昌工程学院学报, 2023, 42(1): 1-10.
XIAO R B, CHEN Z Z. From swarm intelligence optimization to swarm intelligence evolution[J]. Journal of Nanchang Institute of Technology, 2023, 42(1): 1-10.
[14] XIAO R B. Four development stages of collective intelligence[J]. Frontiers of Information Technology & Electronic Engineering, 2024, 25(7): 903-916.
[15] MING F, GONG W Y, LI D C, et al. A competitive and cooperative swarm optimizer for constrained multiobjective optimization problems[J]. IEEE Transactions on Evolutionary Computation, 2023, 27(5): 1313-1326.
[16] 吴虎胜, 张凤鸣, 吴庐山. 一种新的群体智能算法: 狼群算法[J]. 系统工程与电子技术, 2013, 35(11): 2430-2438.
WU H S, ZHANG F M, WU L S. New swarm intelligence algorithm: wolf pack algorithm[J]. Systems Engineering and Electronics, 2013, 35(11): 2430-2438.
[17] JIANG H, YU Q Z, HAN D, et al. A path planning method for unmanned aerial vehicle based on improved wolf pack algorithm[J]. Concurrency and Computation: Practice and Experience, 2024, 36(14): e8095.
[18] KULIEV E V, ZAPOROZHETS D Y, KUREICHIK V V, et al. Wolf pack algorithm for solving VLSI design tasks[J]. Journal of Physics: Conference Series, 2019, 1333(2): 022009.
[19] 赵嘉, 吕丰, 肖人彬, 等. 自适应分组和拥挤距离更新的多目标狼群算法[J]. 控制与决策, 2024, 39(11): 3772-3780.
ZHAO J, LV F, XIAO R B, et al. Multi-objective wolf pack algorithm based on adaptive grouping strategy and crowding distance[J]. Control and Decision, 2024, 39(11): 3772-3780.
[20] WANG L H, NG A H C, DEB K. Multi-objective evolutionary optimisation for product design and manufacturing[M]. London: Springer, 2011.
[21] DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.
[22] TAKAHAMA T, SAKAI S. Constrained optimization by the ε constrained differential evolution with gradient-based mutation and feasible elites[C]//Proceedings of the 2006 IEEE International Conference on Evolutionary Computation. Piscataway: IEEE, 2006: 1-8.
[23] RUNARSSON T P, YAO X. Stochastic ranking for constrained evolutionary optimization[J]. IEEE Transactions on Evolutionary Computation, 2000, 4(3): 284-294.
[24] PANICHELLA A. An improved Pareto front modeling algorithm for large-scale many-objective optimization[C]//Proceedings of the 2022 Genetic and Evolutionary Computation Conference. New York: ACM, 2022: 565-573.
[25] SUN R Q, ZOU J, LIU Y, et al. A multistage algorithm for solving multiobjective optimization problems with multiconstraints[J]. IEEE Transactions on Evolutionary Computation, 2023, 27(5): 1207-1219.
[26] LIU Z Z, WANG B C, TANG K. Handling constrained multiobjective optimization problems via bidirectional coevolution[J]. IEEE Transactions on Cybernetics, 2022, 52(10): 10163-10176.
[27] QIAO K J, LIANG J, LIU Z Y, et al. Evolutionary multitasking with global and local auxiliary tasks for constrained multi-objective optimization[J]. IEEE/CAA Journal of Automatica Sinica, 2023, 10(10): 1951-1964.
[28] MING F, GONG W Y, WANG L, et al. Constrained multi-objective optimization via multitasking and knowledge transfer[J]. IEEE Transactions on Evolutionary Computation, 2024, 28(1): 77-89.
[29] TIAN Y, WANG R Q, ZHANG Y J, et al. Adaptive population sizing for multi-population based constrained multi-objective optimization[J]. Neurocomputing, 2025, 621: 129296.
[30] TIAN Y, ZHU W J, ZHANG X Y, et al. A practical tutorial on solving optimization problems via PlatEMO[J]. Neurocomputing, 2023, 518: 190-205.
[31] COELLO C A C, CORTéS N C. Solving multiobjective optimization problems using an artificial immune system[J]. Genetic Programming and Evolvable Machines, 2005, 6(2): 163-190.
[32] ZITZLER E, THIELE L, LAUMANNS M, et al. Performance assessment of multiobjective optimizers: an analysis and review[J]. IEEE Transactions on Evolutionary Computation, 2003, 7(2): 117-132.
[33] MA Z W, WANG Y. Evolutionary constrained multiobjective optimization: test suite construction and performance comparisons[J]. IEEE Transactions on Evolutionary Computation, 2019, 23(6): 972-986.
[34] FAN Z, LI W J, CAI X Y, et al. An improved epsilon constraint-handling method in MOEA/D for CMOPs with large infeasible regions[J]. Soft Computing, 2019, 23: 12491-12510.
[35] DEB K, JAIN H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part II: handling constraints and extending to an adaptive approach[J]. IEEE Transactions on Evolutionary Computation, 2014, 18(4): 602-622.
[36] KUMAR A, WU G H, ALI M Z, et al. A benchmark-suite of real-world constrained multi-objective optimization problems and some baseline results[J]. Swarm and Evolutionary Computation, 2021, 67: 100961. |