[1] 2022全球自然灾害评估报告[R]. 北京: 中华人民共和国应急管理部, 2023.
2022 Global natural disaster assessment report[R]. Beijing: Ministry of Emergency Management of the People’s Republic of China, 2023.
[2] NAJY W, ARCHETTI C, DIABAT A. Collaborative truck-and-drone delivery for inventory-routing problems[J]. Transportation Research Part C: Emerging Technologies, 2023, 146: 103791.
[3] LUO Q, WU G, TRIVEDI A, et al. Multi-objective optimization algorithm with adaptive resource allocation for truck-drone collaborative delivery and pick-up services[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(9): 9642-9657.
[4] GAO J, ZHEN L, WANG S. Multi-trucks-and-drones cooperative pickup and delivery problem[J]. Transportation Research Part C: Emerging Technologies, 2023, 157: 104407.
[5] 颜瑞, 陈立双, 朱晓宁, 等. 考虑区域限制的卡车搭载无人机车辆路径问题研究[J]. 中国管理科学, 2022, 30(5): 144-155.
YAN R, CHEN L S, ZHU X N, et al. Research on vehicle routing problem with truck and drone considering regional restriction[J]. Chinese Journal of Management Science, 2022, 30(5): 144-155.
[6] LU M, LIAO X, YUE H, et al. Optimizing distribution of droneports for emergency monitoring of flood disasters in China[J]. Journal of Flood Risk Management, 2020, 13(1): 12593.
[7] ZAFAR Z, AWAIS M, JALEEL A, et al. A distributed framework of autonomous drones for planning and execution of relief operations during flood situations[J]. International Arab Journal of Information Technology, 2021, 18(1): 16-24.
[8] 叶立威, 吴钧皓, 戚远航, 等. 改进混合粒子群算法求解带时间窗的无人机与车辆协同路径调度问题[J]. 计算机应用研究, 2024, 41(8): 2336-2342.
YE L W, WU J H, QI Y H, et al. Improved hybrid particle swarm optimization algorithm for vehicle routing problem with drone and time window[J]. Application Research of Computers, 2024, 41(8): 2336-2342.
[9] CHU J C, SHUI C S, LIN K H. Optimization of trucks and drones in tandem delivery network with drone trajectory planning[J]. Computers & Industrial Engineering, 2024, 189: 110000.
[10] LONG Y, XU G, ZHAO J, et al. Dynamic truck-UAV collaboration and integrated route planning for resilient urban emergency response[J]. IEEE Transactions on Engineering Management, 2023(99): 1-13.
[11] GARRIDO R A, LAMAS P, PINO F J. A stochastic programming approach for floods emergency logistics[J]. Transportation Research Part E: Logistics and Transportation Review, 2015, 75: 18-31.
[12] ZHANG D, ZHANG Y, LI S, et al. Bi-objective robust optimisation on relief collaborative distribution considering secondary disasters[J]. International Journal of Production Research, 2023, 62(7): 1-20.
[13] GENG S, HOU H, ZHOU Z. A dynamic multi-objective model for emergency shelter relief system design integrating the supply and demand sides[J]. Natural Hazards, 2024, 120: 2379-2402.
[14] THEEB A N, MURRAY C. Vehicle routing and resource distribution in postdisaster humanitarian relief operations[J]. International Transactions in Operational Research, 2017, 24(6): 1253-1284.
[15] LIU Y, LEI H, ZHANG D, et al. Robust optimization for relief logistics planning under uncertainties in demand and transportation time[J]. Applied Mathematical Modelling, 2018, 55: 262-280.
[16] 周愉峰, 胡欢庆, 陈良勇. 不确定环境下采血点定位-资源配置集成决策的鲁棒优化[J]. 运筹与管理, 2024, 33(8): 72-78.
ZHOU Y F, HU H Q, CHEN L Y. Robust optimization of location-resource allocation integrated decision robust optimization of location-resource allocation integrated decision[J]. Operations Research and Management Science, 2024, 33(8): 72-78.
[17] BERTSIMAS D, SIM M. The price of robustness[J]. Operations Research, 2004, 52(1): 35-53.
[18] 孙艺萌, 邱若臻. 服务水平约束下基于可调节鲁棒优化的供应链分销网络设计模型[J]. 管理工程学报, 2021, 35(3): 158-171.
SUN Y M, QIU R Z. Supply chain distribution network design under service level constraint using affinely adjustable robust optimization[J]. Journal of Industrial Engineering and Engineering Management, 2021, 35(3): 158-171.
[19] 于逸然, 赖惠成, 高古学, 等. 基于遗传算法和A*算法的多农机协同作业优化方法[J/OL]. 系统仿真学报: 1-12[2025?06?28].https://doi.org/10.16182/j.issn1004731x.joss.
24-0453.
YU Y R, LAI H C, GAO G X, et al. Optimization method for multi agricultural machinery collaborative operation based on genetic algorithm and A* algorithm[J/OL]. 系统仿真学报: 1-12[2025-06-28].https://doi.org/10.16182/j.issn1004731x.joss.24-0453.
[20] 邵良杉, 王振, 李昌明. 基于模拟退火与改进粒子群的矿井通风优化算法[J]. 系统仿真学报, 2021, 33 (9): 2085-2094.
SHAO L S, WANG Z, LI C M. Optimization algorithm of mine ventilation based on SA-IPSO[J]. Journal of System Simulation, 2021, 33(9): 2085-2094.
[21] 陈峰, 丁泉, 吴乐, 等. 混合驱动的粒子群算法[J]. 计算机工程与应用, 2024, 60(8): 78-89.
CHEN F, DING Q, WU L, et al. Hybrid driven particle swarm algorithm[J]. Computer Engineering and Applications, 2024, 60(8): 78-89.
[22] 刘志, 宋威. 搜索引导网络辅助的动态粒子群优化算法[J]. 计算机科学与探索, 2024, 18(12): 3189-3202.
LIU Z, SONG W. Search guidance network assisted dynamic particle swarm optimization algorithm[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(12): 3189-3202. |