[1] BENEZETH Y, JODOIN P M, SALIGRAMA V, et al. Abnormal events detection based on spatio-temporal co-occurences[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2009: 2458-2465.
[2] 陈澄, 胡燕. 融合记忆增强的视频异常检测[J]. 计算机工程与应用, 2022, 58(15): 253-259.
CHEN C, HU Y. Video anomaly detection combining memory-augmented[J]. Computer Engineering and Applications, 2022, 58(15): 253-259.
[3] ZHAO Y R, DENG B, SHEN C, et al. Spatio-temporal AutoEncoder for video anomaly detection[C]//Proceedings of the 25th ACM International Conference on Multimedia. New York: ACM, 2017: 1933-1941.
[4] RAVANBAKHSH M, NABI M, SANGINETO E, et al. Abnormal event detection in videos using generative adversarial nets[C]//Proceedings of the IEEE International Conference on Image Processing. Piscataway: IEEE, 2017: 1577-1581.
[5] GONG D, LIU L Q, LE V, et al. Memorizing normality to detect anomaly: memory-augmented deep autoencoder for unsupervised anomaly detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 1705-1714.
[6] PARK H, NOH J, HAM B. Learning memory-guided normality for anomaly detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 14360-14369.
[7] LV H, CHEN C, CUI Z, et al. Learning normal dynamics in videos with meta prototype network[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 15420-15429.
[8] LIU W R, CHANG H, MA B P, et al. Diversity-measurable anomaly detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 12147-12156.
[9] LIU W, LUO W X, LIAN D Z, et al. Future frame prediction for anomaly detection-a new baseline[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 6536-6545.
[10] HOU J L, ZHANG Y Y, ZHONG Q Y, et al. Divide-and-assemble: learning block-wise memory for unsupervised anomaly detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 8771-8780.
[11] ZHONG Y H, CHEN X, JIANG J Y, et al. Reverse erasure guided spatio-temporal autoencoder with compact feature representation for video anomaly detection[J]. Science China Information Sciences, 2022, 65(9): 194101.
[12] CHEN Y Q, ZHOU X S, HUANG T S. One-class SVM for learning in image retrieval[C]//Proceedings of the International Conference on Image Processing. Piscataway: IEEE, 2001: 34-37.
[13] TAX D M J, DUIN R P W. Support vector data description[J]. Machine Learning, 2004, 54(1): 45-66.
[14] ZIMEK A, SCHUBERT E, KRIEGEL H P. A survey on unsupervised outlier detection in high-dimensional numerical data[J]. Statistical Analysis and Data Mining: the ASA Data Science Journal, 2012, 5(5): 363-387.
[15] AKCAY S, ATAPOUR-ABARGHOUEI A, BRECKON T P. Skip-GANomaly: skip connected and adversarially trained encoder-decoder anomaly detection[C]//Proceedings of the International Joint Conference on Neural Networks. Piscataway: IEEE, 2019: 1-8.
[16] WANG X H, DU Y, LIN S J, et al. adVAE: a self-adversarial variational autoencoder with Gaussian anomaly prior knowledge for anomaly detection[J]. Knowledge-Based Systems, 2020, 190: 105187.
[17] HAO Y, LI J, WANG N N, et al. Spatiotemporal consistency-enhanced network for video anomaly detection[J]. Pattern Recognition, 2022, 121: 108232.
[18] 黄少年, 文沛然, 全琪, 等. 基于多支路聚合的帧预测轻量化视频异常检测[J]. 图学学报, 2023, 44(6): 1173-1182.
HUANG S N, WEN P R, QUAN Q, et al. Future frame prediction based on multi-branch aggregation for lightweight video anomaly detection[J]. Journal of Graphics, 2023, 44(6): 1173-1182.
[19] HE K M, GKIOXARI G, DOLLAR P, et al. Mask R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2980-2988.
[20] ACHANTA R, SHAJI A, SMITH K, et al. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11): 2274-2282.
[21] VEDALDI A, SOATTO S. Quick-shift and kernel methods for mode seeking[C]//Proceedings of the European Conference on Computer Vision. Berlin, Heidelberg: Springer, 2008: 705-718.
[22] VEKSLER O, BOYKOV Y, MEHRANI P. Superpixels and supervoxels in an energy optimization framework[C]//Proceedings of the European Conference on Computer Vision. Berlin, Heidelberg: Springer, 2010: 211-224.
[23] BERGH A D M, BOIX X, ROIG G, et al. SEEDS: superpixels extracted via energy-driven sampling[C]//Proceedings of the European Conference on Computer Vision. Berlin, Heidelberg: Springer, 2012: 13-26.
[24] 宋熙煜, 周利莉, 李中国, 等. 图像分割中的超像素方法研究综述[J]. 中国图象图形学报, 2015, 20(5): 599-608.
SONG X Y, ZHOU L L, LI Z G, et al. Review on superpixel methods in image segmentation[J]. Journal of Image and Graphics, 2015, 20(5): 599-608.
[25] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141.
[26] CAO Y , XU J , LIN S , et al. GCNet: non-local networks meet squeeze-excitation networks and beyond[J]. arXiv:1904.11492, 2019.
[27] LI W, MAHADEVAN V, VASCONCELOS N. Anomaly detection and localization in crowded scenes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(1): 18-32.
[28] LU C W, SHI J P, JIA J Y. Abnormal event detection at 150 FPS in MATLAB[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE, 2013: 2720-2727.
[29] LUO W X, LIU W, GAO S H. A revisit of sparse coding based anomaly detection in stacked RNN framework[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 341-349.
[30] LUO W X, LIU W, GAO S H. Remembering history with convolutional LSTM for anomaly detection[C]//Proceedings of the IEEE International Conference on Multimedia and Expo. Piscataway: IEEE, 2017: 439-444.
[31] HU C, ZHU L Q, LAI S X. Spatio-temporal-based context fusion for video anomaly detection[C]//Proceedings of the International Conference on Pattern Recognition, Machine Vision and Intelligent Algorithms. Piscataway: IEEE, 2023: 187-192.
[32] HUANG X Y, ZHAO C D, GAO C X, et al. Synthetic pseudo anomalies for unsupervised video anomaly detection: a simple yet efficient framework based on masked autoencoder[C]//Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2023: 1-5.
[33] WANG Y Z, QIN C, BAI Y, et al. Making reconstruction-based method great again for video anomaly detection[C]//Proceedings of the IEEE International Conference on Data Mining. Piscataway: IEEE, 2022: 1215-1220.
[34] HU C, WU F, WU W, et al. Normal learning in videos with attention prototype network[J]. arXiv:2108.11055, 2021.
[35] WANG Y, LIU T Y, ZHOU J G, et al. Video anomaly detection based on spatio-temporal relationships among objects[J]. Neurocomputing, 2023, 532: 141-151.
[36] 杨静, 吴成茂, 周流平. 基于全局-局部自注意力网络的视频异常检测方法[J]. 通信学报, 2023, 44(8): 241-250.
YANG J, WU C M, ZHOU L P. Novel video anomaly detection method based on global-local self-attention network[J]. Journal on Communications, 2023, 44(8): 241-250.
[37] WEN X P, LAI H C, GAO G X, et al. Video anomaly detection based on cross-frame prediction mechanism and spatio-temporal memory-enhanced pseudo-3D encoder[J]. Engineering Applications of Artificial Intelligence, 2023, 126: 107057. |