计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (10): 361-371.DOI: 10.3778/j.issn.1002-8331.2401-0440

• 工程与应用 • 上一篇    下一篇

基于ISWO的植保无人机处方作业任务规划

漆海霞,周子森,刘英建,冯发生,江锦卓   

  1. 1.华南农业大学 工程学院,广州 510642
    2.国家精准农业航空施药技术国际联合研究中心,广州 510642
    3.华南农业大学 南方农业机械与装备关键技术教育部重点实验室,广州 510642
  • 出版日期:2025-05-15 发布日期:2025-05-15

Task Planning of Plant Protection UAV Prescription Operations Based on ISWO

QI Haixia, ZHOU Zisen, LIU Yingjian, FENG Fasheng, JIANG Jinzhuo   

  1. 1.College of Engineering, South China Agricultural University, Guangzhou 510642, China
    2.National Center for International Collaboration Research on Precision Agricultural Aviation Pesticide Spraying Technology, Guangzhou 510642, China
    3.Key Laboratory of Key Technology on Agricultural Machine and Equipment (Ministry of Education), South China Agricultural University, Guangzhou 510642, China
  • Online:2025-05-15 Published:2025-05-15

摘要: 针对目前植保无人机处方作业任务规划优化方法的空缺,提出了基于改进蛛蜂算法(improved spider wasp optimizer,ISWO)的植保无人机任务规划方法。在预生成的全覆盖作业路径基础上,以电池里程与药箱容量为约束,考虑处方变量施药,以植保无人机任务总体时间最短与非作业路程总距离最小为目标建立了任务规划模型,并且采用ISWO算法对模型进行求解。ISWO在蛛蜂算法的基础上融入了学习因子的正余弦自适应收缩策略与贪婪均值思想的种群初始化办法。经算法有效性分析与案例分析,相较于传统的最大作业距离模式,ISWO能够大幅度降低作业总体时间与非作业路程长度。相较于四个启发式算法WOA、GWO、PSO、SWO,ISWO在寻优性能与稳定性上有突出表现,可为植保无人机处方作业规划提供一定的参考。

关键词: 植保无人机, 处方施药, 蛛蜂算法, 任务规划

Abstract: Aiming at the vacancy of task planning method for prescription spraying of plant protection UAV, this paper proposes a task planning method of plant protection UAV based on improved spider wasp optimizer (ISWO). On the basis of the pre-generated full coverage path, taking the battery mileage and spraying capacity as constraints, considering the variable rate spraying, the task planning model is established with the goal of the shortest overall time of UAV task and the minimum total distance of non-operation distance. Moreover, the model is solved by using the ISWO algorithm, which integrates the learning factors of sine and cosine adaptive contraction strategies with the greedy mean idea for population initialization. Through the effectiveness analysis and case analysis of the algorithm, compared with the maximum operation distance mode, this method can significantly reduce the overall operation time and non-operation distance length. Compared to the four heuristic algorithms, whale optimization algorithm (WOA), grey wolf optimizer (GWO), particle swarm optimization (PSO), and spider web optimizer (SWO), the ISWO algorithm exhibits exceptional performance in optimization and maintains robust model stability. It provides a significant reference for the precision operation planning of plant protection UAV.

Key words: plant protection UAV, prescription spraying, spider wasp optimizer, task planning