[1] 彭璟, 罗浩宇, 赵淦森, 等. 深度学习下的医学影像分割算法综述[J]. 计算机工程与应用, 2021, 57(3):44-57.
PENG J, LUO H Y, ZHAO G S, et al. Survey of medical image segmentation algorithm in deep learning[J]. Computer Engineering and Applications, 2021, 57(3): 44-57.
[2] ILHAN U, ILHAN A. Brain tumor segmentation based on a new threshold approach[J]. Procedia Computer Science, 2017, 120: 580-587.
[3] PRABIN A, VEERAPPAN J. Automatic segmentation of lung CT images by CC based region growing[J]. Journal of Theoretical and Applied Information Technology, 2014, 68(1): 63-69.
[4] MAHMOOD N, SHAH A, WAQAS A, et al. Image segmentation methods and edge detection: an application to knee joint articular cartilage edge detection[J]. Journal of Theoretical and Applied Information Technology, 2015, 71(1): 87-96.
[5] WANG R, LEI T, CUI R, et al. Medical image segmentation using deep learning: a survey[J]. IET Image Processing, 2022, 16(5): 1243-1267.
[6] RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]//Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, 2015: 234-241.
[7] LE N, YAMAZAKI K, QUACH K G, et al. A multi-task contextual atrous residual network for brain tumor detection & segmentation[C]//Proceedings of the 2020 25th International Conference on Pattern Recognition, 2021: 5943-5950.
[8] FAN T, WANG G, LI Y, et al. MA-NET: a multi-scale attention network for liver and tumor segmentation[J]. IEEE Access, 2020, 8: 179656-179665.
[9] FAN T, WANG G, WANG X, et al. MSN-Net: a multi-scale context nested U-Net for liver segmentation[J]. Signal, Image and Video Processing, 2021, 15: 1089-1097.
[10] GUO C, SZEMENYEI M, YI Y, et al. Sa-unet: Spatial attention u-net for retinal vessel segmentation[C]//Proceedings of the 2020 25th International Conference on Pattern Recognition, 2021: 1236-1242.
[11] YAHYATABAR M, JOUVET P, CHERIET F. Dense-Unet: a light model for lung fields segmentation in Chest X-Ray images[C]//Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society, 2020: 1242-1245.
[12] SABOUR S, FROSST N, HINTON G E. Dynamic routing between capsules[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017: 3859-3869.
[13] LALONDE R, BAGCI U. Capsules for object segmentation[J]. arXiv:1804.04241, 2018.
[14] LALONDE R, XU Z, IRMAKCI I, et al. Capsules for biomedical image segmentation[J]. Medical Image Analysis, 2021, 68:101889.
[15] BONHEUR S, ?TERN D, PAYER C, et al. Matwo-CapsNet: a multi-label semantic segmentation capsules network[C]//Proceedings of the International Conference on Medical Image Computing and Computer-Assisted intervention, 2019: 664-672.
[16] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 3431-3440.
[17] ZHANG J, JIN Y, XU J, et al. MDU-Net: multi-scale densely connected U?Net for biomedical image segmentation[J]. arXiv:1812.00352, 2018.
[18] OKTAY O, SCHLEMPER J, FOLGOC L L, et al. Attention U-Net: learning where to look for the pancreas[J]. arXiv:1804.03999, 2018.
[19] ZHOU Z, RAHMAN SIDDIQUEE M M, TAJBAKHSH N, et al. UNet++: a nested U-Net architecture for medical image segmentation[C]//Proceedings of the Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, 2018: 3-11.
[20] ISENSEE F, JAEGER P F, KOHL S A A, et al. nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation[J]. Nature Methods, 2021, 18(2): 203-211.
[21] MOBINY A, NGUYEN H V. Fast CapsNet for lung cancer screening[C]//Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, 2018: 741-749.
[22] HE Y, QIN W, WU Y, et al. Automatic left ventricle segmentation from cardiac magnetic resonance images using a capsule network[J]. Journal of X-ray Science and Technology, 2020, 28(3): 541-553.
[23] JIMéNEZ-SáNCHEZ A, ALBARQOUNI S, MATEUS D. Capsule networks against medical imaging data challenges[C]//Proceedings of the Intravascular Imaging and Computer Assisted Stenting and Large-Scale Annotation of Biomedical Data and Expert Label Synthesis, 2018: 150-160.
[24] SHIRAISHI J, KATSURAGAWA S, IKEZOE J, et al. Development of a digital image database for chest radiographs with and without a lung nodule: receiver operating characteristic analysis of radiologists' detection of pulmonary nodules[J].American Journal of Roentgenology, 2000, 174(1): 71-74.
[25] BERNARD O, LALANDE A, ZOTTI C, et al. Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved?[J]. IEEE Transactions on Medical Imaging, 2018, 37(11): 2514-2525.
[26] GINNEKEN B V, STEGMANN M B, LOOG M. Segmentation of anatomical structures in chest radiographs using supervised methods: a comparative study on a public database[J]. Medical Image Analysis, 2006, 10(1): 19-40. |