[1] WANG L, TANG J, LIAO Q. A study on radar target detection based on deep neural networks[J], IEEE Sensors Letters, 2019, 3(3): 1-4.
[2] JAMTSHO Y, RIYAMONGKOL P, WARANUSAST R. Real-time license plate detection for non-helmeted motorcyclist using YOLO[J]. ICT Express, 2021, 7(1): 104-109.
[3] HUANG L, FU Q. HE M, et al. Detection algorithm of safety helmet wearing based on deep learning[J]. Concurrency and Computation: Practice and Experience, 2021, 33(13): e6234.
[4] PATHAK A R, PANDEY M, RAUTARAY S. Application of deep learning for object detection[J]. Procedia Computer Science, 2018, 132: 1706-1717.
[5] CHEN S B, DAI B M, TANG J, et al. A refined single-stage detector with feature enhancement and alignment for oriented objects[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 8898-8908.
[6] EDGAR M P, GIBSON G M, PADGETT M J. Principles and prospects for single-pixel imaging[J]. Nature Photonics, 2019, 13(1): 13-20.
[7] ZHENG W, TANG W, JIANG L, et al. SE-SSD: self-ensembling single-stage object detector from point cloud[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New York, Jun 19-25, 2021: 14494-14503.
[8] LI M, ZHU H, CHEN H, et al. Research on object detection algorithm based on deep learning[J]. Journal of Physics: Conference Series, 2021, 1995(1): 310-314.
[9] SHARMA T, DEBAQUE B, DUCLOS N, et al. Deep learning-based object detection and scene perception under bad weather conditions[J]. Electronics, 2022, 11(4): 563.
[10] HUANG H, TANG X, WEN F, et al. Small object detection method with shallow feature fusion network for chip surface defect detection[J]. Scientific Reports, 2022, 12(1): 3914.
[11] LI D, XU J, WANG J, et al. A multi-scale fusion convolutional neural network based on attention mechanism for the visualization analysis of EEG signals decoding[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28(12): 2615-2626.
[12] CHEN L, ZHANG Z, PENG L. Fast single shot multibox detector and its application on vehicle counting system[J]. IET Intelligent Transport Systems, 2018, 12(10): 1406-1413.
[13] CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]//European Conference on Computer Vision, Aug 23-28, 2020. Cham: Springer, 2020: 213-229.
[14] ZHU B, WANG J, JIANG Z, et al. Autoassign: differentiable label assignment for dense object detection[J]. arXiv:2007.03496, 2020.
[15] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]//Advances in Neural Information Processing Systems, Canada, Dec 7-12, 2015: 91-99.
[16] HURTIK P, MOLEK V, HULA J, et al. Poly-YOLO: higher speed, more precise detection and instance segmentation for YOLOv3[J]. Neural Computing and Applications, 2022, 34(10): 8275-8290.
[17] ZHU X, LYU S, WANG X, et al. TPH-YOLOv5: improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, Canada, Oct 10-17, 2021: 2778-2788.
[18] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, Jun 24-29, 2014: 580-587.
[19] QI G, ZHANG Y, WANG K, et al. Small object detection method based on adaptive spatial parallel convolution and fast multi-scale fusion[J]. Remote Sensing, 2022, 14(2): 420.
[20] ZHU L, LEE F, CAI J, et al. An improved feature pyramid network for object detection[J]. Neurocomputing, 2022, 483: 127-139.
[21] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//European Conference on Computer Vision, Amsterdam, Oct 11-14, 2016: 21-37.
[22] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision, Venice, Oct 24-27, 2017: 2980-2988.
[23] REDMON J, FARHADI A. Yolov3: an incremental improvement[J]. arXiv:1804.02767, 2018.
[24] LIU B, ZHANG T, LI Y, et al. Kernel probabilistic k-means clustering[J]. Sensors, 2021, 21(5): 1892.
[25] LU P, DING Y, WANG C. Multi-small target detection and tracking based on improved YOLO and SIFT for drones[J]. International Journal of Innovative Computing, Information and Control, 2021, 17(1): 205-224. |