[1] ZHANG F, DAI G, PENG X. A survey on human-computer interaction in virtual reality[J]. Scientia Sinica Informationis, 2016, 46(12): 1711-1736.
[2] YU H C, YANG X D, ZHANG Y W, et al. A review on the recognition of mid-air gestures[J]. Science & Technology Review, 2017: 35(16): 64-73.
[3] VULETIC T. Systematic literature review of hand gestures used in human computer interaction interfaces[J]. International Journal of Human-Computer Studies, 2019,129: 74-94.
[4] MIN Y, HAO A, CHAI X, et al. Visual alignment constraint for continuous sign language recognition[C]//Computer Vision and Pattern Recognition, 2021: 11542-11551.
[5] WU X, FINNEGAN D, O'NEILL E, et al. Handmap: robust hand pose estimation via intermediate dense guidance map supervision[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 237-253.
[6] FANG L, LIU X, LIU L, et al. JGR-P2O: joint graph reasoning based pixel-to-offset prediction network for 3D hand pose estimation from a single depth image[C]//Computer Vision and Pattern Recognition, 2020: 120-137.
[7] IQBAL U, MOLCHANOV P, BREUEL T M, et al. Hand pose estimation via latent 2.5D heatmap regression[C]//Computer Vision and Pattern Recognition, 2018: 118-134.
[8] GE L, REN Z, LI Y, et al. 3D hand shape and pose estimation from a single RGB image[C]//Computer Vision and Pattern Recognition, 2019: 10833-10842.
[9] ZHOU Y, HABERMANN M, XU W, et al. Monocular real-time hand shape and motion capture using multi-modal data[C]//Computer Vision and Pattern Recognition, 2020: 5346-5355.
[10] YANG L L, LI S L, LEE D, et al. Aligning latent spaces for 3D hand pose estimation[C]//2019IEEE/CVF International Conference on Computer Vision, 2019: 2335-2343.
[11] 马佳铭. 基于图卷积的手部姿态估计与形状重建研究[D]. 大连:大连理工大学, 2021.
MA J M. Research on hand pose estimation and shape reconstruction based on graph convolutional network[D]. Dalian: Dalian University of Technology, 2021.
[12] DOOSTI B. Hand pose estimation: a survey[J]. arXiv:1903.01013, 2019.
[13] MEHTA D, SRIDHAR S, SOTNYCHENKO O, et al. VNect: real-time 3D human pose estimation with a single RGB camera[C]//International Conference on Computer Graphics and Interactive Techniques, 2017: 1-14.
[14] 李一博. 面向手物交互场景的手部检测与姿态估计[D]. 大连: 大连理工大学, 2021.
LI Y B. Hand detection and pose estimation in hand-object interaction scene[D]. Dalian: Dalian University of Technology, 2021.
[15] ZIMMERMANN C, CEYLAN D, YANG J, et al. FreiHAND: a dataset for markerless capture of hand pose and shape from single RGB images[C]//Computer Vision and Pattern Recognition, 2019: 813-822.
[16] ZIMMERMANN C, BROX T. Learning to estimate 3D hand pose from single rgb images[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 4903-4911.
[17] CHEN X, LIU Y, MA C, et al. Camera-space hand mesh recovery via semantic aggregation and adaptive 2D-1D registration[C]//Computer Vision and Pattern Recognition, 2021: 13274-13283.
[18] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Computer Vision and Pattern Recognition, 2015: 770-778.
[19] SIMON T, JOO H, MATTHEWS I, et al. Hand keypoint detection in single images using multiview bootstrapping[C]//Computer Vision and Pattern Recognition, 2017: 1145-1153.
[20] ZHANG J, JIAO J, CHEN M, et al. 3D hand pose tracking and estimation using stereo matching[J]. arXiv:1610.07214, 2016.
[21] MUELLER F, BERNARD F, SOTNYCHENKO O, et al. Ganerated hands for real-time 3D hand tracking from monocular RGB[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 49-59.
[22] SRIDHAR S, MUELLER F, ZOLLH?FER M, et al. Real-time joint tracking of a hand manipulating an object from RGB-D input[C]//European Conference on Computer Vision, 2016: 294-310.
[23] MUELLER F, MEHTA D, SOTNYCHENKO O, et al. Real-time hand tracking under occlusion from an egocentric RGB-D sensor[C]//Computer Vision and Pattern Recognition, 2017: 1154-1163.
[24] BOUKHAYMA A, BEM R D, TORR P H. 3D hand shape and pose from images in the wild[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 10843-10852.
[25] BAEK S, KIM K I, KIM T K. Pushing the envelope for rgb-based dense 3D hand pose estimation via neural rendering[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 1067-1076.
[26] ZHANG X, LI Q, MO H, et al. End-to-end hand mesh recovery from a monocular rgb image[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 2354-2364.
[27] THEODORIDIS T, CHATZIS T, SOLACHIDIS V, et al. Cross-modal variational alignment of latent spaces[C]//Computer Vision and Pattern Recognition, 2020: 960-961.
[28] 刘家祥. 基于深度学习的三维手势估计方法[D]. 成都:电子科技大学, 2022.
LIU J X. Research on 3D gesture estimation methods based on depth learning[D]. Chengdu:University of Electronic Science and Technology of China, 2022.
[29] CHENG W, PARK J H, KO J H. HandFoldingNet: a 3D hand pose estimation network using multiscale-feature guided folding of a 2D hand skeleton[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 11260-11269. |