[1] DATA.AI.2022年移动市场报告[EB/OL].[2022-06-11]. https://www.data.ai/cn/insights/market-data/state-of-mobile-2022/.
Data.ai.2022 Mobile market report[EB/OL].[2022-06-11]. https://www.data.ai/cn/insights/market-data/state-of-mobile-2022/.
[2] 厍向阳, 刘巧, 叶鸥.融合LeNet-5和Siamese神经网络模型的人脸认证算法研究[J]. 计算机工程与应用, 2020, 56(15): 215-220.
SHE X Y, LIU Q, YE O. Research on face verification algorithm based on LeNet-5 and Siamese neural network model[J]. Computer Engineering and Applications, 2020, 56(15): 215-220.
[3] 贺康, 李梦醒, 赵健, 等. 基于 Fingercode和同态加密的指纹认证方案[J].计算机工程与应用, 2013, 49(24): 78-82.
HE K, LI M X, ZHAO J, et al. Fingercode based remote fingerprint authentication scheme using homomorphic encryption[J]. Computer Engineering and Applications, 2013, 49(24): 78-82.
[4] ALROWAILY K, ALRUBAIAN M, MIRZA D A. Smart phones security-touch screen smudge attack[C]//Proceedings of the International Conference on Security and Management, 2012: 1-2.
[5] TSOKKIS P, STAVROU E. A password generator tool to increase users’ awareness on bad password construction strategies[C]//2018 International Symposium on Networks, Computers and Communications (ISNCC). Rome, Italy: IEEE, 2018: 1-5.
[6] LIU X, LI Y, DENG R H, et al. When human cognitive modeling meets PINs: user-independent inter-keystroke timing attacks[J]. Computers & Security, 2019, 80(1): 90-107.
[7] MARKERT P, BAILEY D V, GOLLA M, et al. This PIN can be easily guessed: analyzing the security of smartphone unlock PINs[C]//2020 IEEE Symposium on Security and Privacy (SP). San Francisco, CA, USA: IEEE, 2020: 286-303.
[8] SYED Z, HELMICK J, BANERJEE S, et al. Effect of user posture and device size on the performance of touch-based authentication systems[C]//IEEE International Symposium on High Assurance Systems Engineering. Daytona Beach Shores, FL, USA: IEEE, 2015: 10-17.
[9] WU J, ISHWAR P, KONRAD J. The value of posture, build and dynamics in gesture-based user authentication.[C]//IEEE International Joint Conference on Biometrics. Clearwater, FL, USA: IEEE, 2014: 1-8.
[10] TUTKUVIENE J, SCHIEFENHOEVEL W. Laterality of handgrip strength: age-and physical training-related changes in Lithuanian schoolchildren and conscripts[J]. Annals of the New York Academy of Sciences, 2013, 1288(1): 124-134.
[11] KUBOTA H, DEMURA S, KAWABATA H. Laterality and age-level differences between young women and elderly women in controlled force exertion (CFE)[J]. Archives of Gerontology and Geriatrics, 2012, 54(2): 68-72.
[12] TAHIR H, KHAN M S, TARIQ M O. Performance analysis and comparison of Faster R-CNN, Mask R-CNN and ResNet50 for the detection and counting of vehicles[C]//2021 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS).Greater Noida, India: IEEE, 2021: 587-594
[13] RAO G, ZHANG Y, ZHANG L, et al. MGL-CNN: a hierarchical posts representations model for identifying depressed individuals in online forums[J]. IEEE Access, 2020, 8(1): 32395-32403.
[14] LIN C Y, LI Y, ZHANG K, et al. CNN-based super resolution for video coding using decoded information[C]//International Conference on Visual Communications and Image Processing. Munich, Germany: IEEE, 2021: 1-5.
[15] MAYORGA P, VALDEZ J A, DRUZGALSKI C, et al. CNN networks to classify cardiopulmonary signals[C]//2022 Global Medical Engineering Physics Exchanges/Pan American Health Care Exchanges (GMEPE/PAHCE). Panama City, Panama: IEEE, 2022: 1-4.
[16] YANG Y, GUO B, WANG Z, et al. Behave sense: continuous authentication for security-sensitive mobile apps using behavioral biometrics[J]. Ad Hoc Networks, 2019, 84(3): 9-18.
[17] EL-SOUD M, GABER T, ALFAYEZ F, et al. Implicit authentication method for smartphone users based on rank aggregation and random forest[J]. Alexandria Engineering Journal, 2021, 60(1): 273-283.
[18] 芦效峰, 张胜飞, 伊胜伟. 基于CNN和RNN的自由文本击键模式持续身份认证[J]. 清华大学学报(自然科学版), 2018, 58(12): 1072-1078.
LU X F, ZHANG S F, YI S W. Free-text keystroke continuous authentication using CNN and RNN[J]. Journal of Tsinghua University (Science and Technology), 2018, 58(12): 1072-1078.
[19] SHIRAGA K, MAKIHARA Y, MURAMATSU D, et al. GEINet: view-invariant gait recognition using a convolutional neural network[C]//Proceedings of the 2016 International Conference on Biometrics (ICB). Halmstad, Sweden: IEEE, 2016: 1-8.
[20] MATTEO G, MICHELE R. IDNet: smartphone-based gait recognition with convolutional neural networks[J]. Pattern Recognition, 2018, 74(1): 25-37.
[21] ZHAO Y, ZHOU S. Wearable device-based gait recognition using angle embedded gait dynamic images and a convolutional neural network[J]. Sensors, 2017, 17(3): 1-20.
[22] TANG C, PHOHA V V. An empirical evaluation of activities and classifiers for user identification on smartphones[C]//2016 IEEE 8th International Conference on Biometrics Theory, Applications and Systems (BTAS). Niagara Falls, NY, USA: IEEE, 2016: 1-8.
[23] 王欣, 王美丽, 边党伟. 融合MobileNetv2和注意力机制的轻量级人像分割算法[J].计算机工程与应用, 2022, 58(7): 220-228.
WANG X, WANG M L, BIAN D W. Algorithm for portrait segmentation combined with MobileNetv2 and attention mechanism[J]. Computer Engineering and Applications, 2022, 58(7): 220-228.
[24] 王玲敏, 段军, 辛立伟.引入注意力机制的YOLOv5安全帽佩戴检测方法[J].计算机工程与应用, 2022, 58(9): 303-312.
WANG L M, DUAN J, XIN L W. YOLOv5 helmet wear detection method with introduction of attention mechanism[J]. Computer Engineering and Applications, 2022, 58(9): 303-312.
[25] LI N, WANG Z. Spatial attention guided residual attention network for hyperspectral image classification[J]. IEEE Access, 2022, 10: 9830-9847.
[26] 杜先君, 巩彬, 余萍, 等. 基于CBAM-CNN的模拟电路故障诊断[J]. 控制与决策, 2022, 37(10): 2609-2618.
DU X J, GONG B, YU P, et al. CBAM-CNN based analog circuit fault diagnosis[J]. Control and Decision, 2022, 37(10): 2609-2618.
[27] 许文鑫, 张敏, 莫继良, 等. 基于CBAM-CNN的高速列车制动闸片摩擦块偏磨状态监控[J]. 摩擦学学报, 2022, 42(6): 1226-1236.
XU W X, ZHANG M, MO J L, et al. Monitoring of partial wear state of brake sluice friction block of high speed train based on CBAM-CNN[J]. Tribology, 2022, 42(6): 1226-1236.
[28] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Berlin, Heidelberg: Springer, 2018: 3-19.
[29] JIE H, LI S, GANG S, et al. Squeeze-and-excitation networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA: IEEE, 2018: 7132-7141.
[30] YANG Q, PENG G, NGUYEN D T, et al. A multimodal data set for evaluating continuous authentication performance in smartphones[C]//Proceedings of the 12th ACM Conference on Embedded Network Sensor Systems. New York, NY, USA: Association for Computing Machinery, 2014: 358-359.
[31] BüCH H. Continuous authentication using inertial-sensors of smartphones and deep learning[D]. Stuttgart, Germany: University of Media Stuttgart, 2019.
[32] SITOVáZ, ?EDěNKA J, YANG Q, et al. HMOG: new behavioral biometric features for continuous authentication of smartphone users[J]. IEEE Transactions on Information Forensics and Security, 2016, 11(5): 877-892.
[33] CENTENO M P, GUAN Y, MOORSEL A V. Mobile based continuous authentication using deep features[C]//Proceedings of the 2nd International Workshop on Embedded and Mobile Deep Learning. New York, NY, USA: Association for Computing Machinery, 2018: 19-24.
[34] CHAO S. Performance analysis of multi-motion sensor behavior for active smartphone authentication[J]. IEEE Transactions on Information Forensics and Security, 2017, 13(1): 48-62.
[35] LI Y, HU H, GANG Z, et al. Sensor-based continuous authentication using cost-effective kernel ridge regression[J]. IEEE Access, 2018, 6: 32554-32565.
[36] LI Y, HU H, ZHOU G. Using data augmentation in continuous authentication on smartphones[J]. IEEE Internet of Things Journal, 2018, 6(1): 628-640. |