[1] 朱煜, 方观寿, 郑兵兵, 等. 基于旋转框精细定位的遥感目标检测方法研究[J]. 自动化学报, 2023, 49(2): 415-424.
ZHU Y, FANG G Y, ZHENG B B, et al. Research on detection method of refined rotated boxes in remote sensing[J].Acta Automatica Sinica, 2023, 49(2): 415-424.
[2] 王道累, 杜文斌, 刘易腾, 等. 基于密集连接与特征增强的遥感图像检测[J]. 计算机工程, 2022, 48(6): 251-256.
WANG D L, DU W B, LIU Y T, et al. Remote sensing images detection based on dense connection and feature enhancement[J].Computer Engineering, 2022, 48(6): 251-256.
[3] 谢俊章, 彭辉, 唐健峰, 等. 改进YOLOv4的密集遥感目标检测[J]. 计算机工程与应用, 2021, 57(22): 247-256.
XIE J Z, PENG H, TANG J F, et al. Improved YOLOv4 for dense remote sensing target detection[J]. Computer Engineering and Applications, 2021, 57(22): 247-256.
[4] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[5] HE K, GKIOXARI G, DOLLáR P, et al. Mask R-CNN[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision, 2017: 2980-2988.
[6] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
[7] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the 14th European Conference on Computer Vision, 2016: 21-37.
[8] JIANG Y, ZHU X, WANG X, et al. R2CNN: rotational region CNN for orientation robust scene text detection[J]. arXiv:1706.09579, 2017.
[9] DING J, XUE N, LONG Y, et al. Learning RoI transformer for oriented object detection in aerial images[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 2844-2853.
[10] YANG X, YAN J, HE T. On the arbitrary-oriented object detection: classification based approaches revisited[J]. International Journal of Computer Vision, 2020, 130(5): 1340-1365.
[11] LI C, XU C, CUI Z, et al. Feature-attentioned object detection in remote sensing imagery[C]//Proceedings of the 26th IEEE International Conference on Image Processing, 2019: 3886-3890.
[12] CHEN L, LIU C, CHANG F, et al. Adaptive multi-level feature fusion and attention-based network for arbitrary-oriented object detection in remote sensing imagery[J]. Neurocomputing, 2021, 451(2): 67-80.
[13] LI Y Y, HUANG Q, PEI X, et al. RADet: refine feature pyramid network and multi-layer attention network for arbitrary-oriented object detection of remote sensing images[J]. Remote Sensing, 2020, 12(3): 389-403.
[14] YANG F, LI W, HU H, et al. Multi-scale feature integrated attention-based rotation network for object detection in VHR aerial images[J]. Sensors Basel Switzerland, 2020, 20(6): 1686-1701.
[15] 赵琰, 赵凌君, 匡纲要. 基于注意力机制特征融合网络的SAR图像飞机目标快速检测[J]. 电子学报, 2021, 49(9): 1665-1674.
ZHAO Y, ZHAO L J, KUANG J Y. Attention feature fusion network for rapid aircraft detection in SAR images[J]. Acta Electronica Sinica, 2021, 49(9): 1665-1674.
[16] 李婕, 周顺, 朱鑫潮, 等. 结合多通道注意力的遥感图像飞机目标检测[J]. 计算机工程与应用, 2022, 58(1): 209-217.
LI J, ZHOU S, ZHU X C, et al. Remote sensing image aircraft target detection combined with multiple channel attention[J]. Computer Engineering and Applications, 2022, 58(1): 209-217.
[17] 李阳阳, 毛鹤亭, 张小龙, 等. 利用非局部上下文信息的遥感图像小目标检测[J]. 西安电子科技大学学报(自然科学版), 2022, 49(5): 117-124.
LI Y Y, MAO H T, ZHANG X L, et al. Small object detection in remote sensing images using non-local context information[J]. Journal of Xidian University (Natural Science), 2022, 49(5): 117-124.
[18] ZHU X, LYU S, WANG X, et al. TPH-YOLOv5: improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, 2021: 2778-2788.
[19] LIU Z, LIN Y, CAO Y, et al. Swin Transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, 2021: 9992-10002.
[20] WANG X L, GIRSHICK R, GUPTA A. Non-local neural?networks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 7794-7803.
[21] TROCKMAN A, KOLTER Z, et al. Patches are all you need?[J]. arXiv:2201.09792, 2022.
[22] BA J L, KIROS J R, HINTON G E. Layer normalization[J]. arXiv:1607.06450, 2016.
[23] XIA G S, BAI X, DING J, et al. DOTA: a large-scale dataset for object detection in aerial images[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 3974-3983.
[24] LIU Z, WANG H, WENG L, et al. Ship rotated bounding box space for ship extraction from high-resolution optical satellite images with complex backgrounds[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 13(8): 1074-1078.
[25] COATES A, NG Y A. Learning feature representations with K-means[M]//Neural networks: tricks of the trade. Berlin, Heidelberg: Springer, 2012: 561-580.
[26] GLENN J, ALEX S, JIRKA B, et al. ultralytics/yolov5: v5.0[EB/OL]. [2022-04-18]. https://github.com/ultralytics/yolov5.
[27] LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 8759-8768.
[28] LIU S, DI H, WANG Y. Receptive field block net for accurate and fast object detection[C]//LNCS 11215: Proceedings of the 15th European Conference on Computer Vision, 2018: 404-419.
[29] 刘高天, 段锦, 范祺, 等. 基于改进RFBNet算法的遥感图像目标检测[J]. 吉林大学学报(理学版), 2021, 59(5): 1188-1198.
LIU G T, DUAN J, FAN Q, et al. Target detection for remote sensing image based on improved RFBNet algorithm[J]. Journal of Jilin University (Science Edition), 2021, 59(5): 1188-1198.
[30] ZHANG G, LU S, ZHANG W, et al. CAD-Net: a context-aware detection network for objects in remote sensing imagery[J]. IEEE Transactions on Geoscience and Remote Sen-sing, 2019, 57(12): 10015-10024.
[31] YANG X, YANG J, YAN J, et al. SCRDet: towards more robust detection for small, cluttered and rotated objects[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, 2019: 8231-8240.
[32] QIN R, LIU Q, GAO G, et al. MRDet: a multi-head network for accurate oriented object detection in aerial images[J]. arXiv:2012.13135, 2020.
[33] HAN J, DING J, XUE N, et al. ReDet: a rotation-equivariant detector for aerial object detection[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 2785-2794.
[34] YANG X, LIU Q, YAN J, et al. R3Det: refined single-stage detector with feature refinement for rotating object[J]. arXiv:1908.05612, 2019.
[35] YANG X, YAN J, YANG X, et al. SCRDet++: detecting small, cluttered and rotated objects via instance-level feature denoising and rotation loss smoothing[J]. arXiv: 2004. 13316, 2020. |