[1] 王满利, 张航, 张长森. 基于深度学习的低光照目标检测算法[J/OL]. 北京邮电大学学报(2023-08-01)[2024-08-07]. https://doi.org/10.13190/j.jbupt.2023-161.
WANG M L, ZHANG H, ZHANG C S. Deep learning based algorithm for low light target detection[J/OL]. Journal of Beijing University of Posts and Telecommunication (2023-08-01)[2024-08-07]. https://doi.org/10.13190/j.jbupt.2023-161.
[2] WANG K, LIU M Z. Object recognition at night scene based on DCGAN and faster R-CNN[J]. IEEE Access, 2020, 8: 193168-193182.
[3] XU Y, CHU K, ZHANG J. Nighttime vehicle detection algorithm based on improved Faster-RCNN[J]. IEEE Access, 2023, 12: 19299-19306.
[4] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the 14th European Conference on Computer Vision (ECCV 2016), Amsterdam, The Netherlands, October 11-14, 2016: 21-37.
[5] TAN M, PANG R, LE Q V. Efficientdet: scalable and efficient object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 10781-10790.
[6] 王琳毅, 白静, 李文静, 等. YOLO 系列目标检测算法研究进展[J]. 计算机工程与应用, 2023, 59(14): 15-29.
WANG L Y, BAI J, LI W J, et al. Research progress of YOLO series target detection algorithms[J]. Computer Engineering and Applications, 2023, 59(14): 15-29.
[7] SASAGAWA Y, NAGAHARA H. YOLO in the dark-domain adaptation method for merging multiple models[C]//Proceedings of the 16th European Conference on Computer Vision (ECCV 2020), Glasgow, UK, August 23-28, 2020: 345-359.
[8] QIN Q P, CHANG K, HUANG M Y, et al. DENet: detection-driven enhancement network for object detection under adverse weather conditions[C]//Proceedings of the Asian Conference on Computer Vision, 2022: 2813-2829.
[9] JIANG Q, MAO Y, CONG R, et al. Unsupervised decomposition and correction network for low-light image enhancement[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(10): 19440-19455.
[10] HU M, WANG S, LI B, et al. Penet: towards precise and efficient image guided depth completion[C]//Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), 2021: 13656-13662.
[11] CUI Z, LI K, GU L, et al. You only need 90k parameters to adapt light: a light weight transformer for image enhancement and exposure correction[C]//Proceedings of the 33rd British Machine Vision Conference 2022 (BMVC 2022), London, UK, November 21-24, 2022.
[12] VINOTH K P S. Lightweight object detection in low light: pixel-wise depth refinement and TensorRT optimization[J]. Results in Engineering, 2024, 23: 102510.
[13] YU N N, WANG J, SHI H, et al. Degradation-removed multiscale fusion for low-light salient object detection[J]. Pattern Recognition, 2024, 155: 110650.
[14] YUE H, GUO J, YIN X, et al. Salient object detection in low-light RGB-T scene via spatial-frequency cues mining[J]. Neural Networks: the Official Journal of the International Neural Network Society, 2024, 178: 106406.
[15] JING L, WANG B. EMNet: edge-guided multi-level network for salient object detection in low-light images[J]. Image and Vision Computing, 2024, 143: 104933.
[16] HONG Y, WEI K, CHEN L, et al. Crafting object detection in very low light[C]//Proceedings of the 32nd British Machine Vision Conference, 2021.
[17] MA L, MA T Y, LIU R S, et al. Penet: toward fast, flexible, and robust low-light image enhancement[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 2022: 5627-5636.
[18] WANG W, DAI J, CHEN Z, et al. Intern image: exploring large-scale vision foundation models with deformable convolutions[C]//Proceedings of the 2023 IEEE Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 14408-14419.
[19] DAI X, CHEN Y, XIAO B, et al. Dynamic head: unifying object detection heads with attentions[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 7373-7382.
[20] LIU X, PENG H, ZHENG N, et al. EfficientViT: memory efficient vision transformer with cascaded group attention[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 14420-14430.
[21] WAN D H, LU R S, SHEN S Y, et al. Mixed local channel attention for object detection[J]. Engineering Applications of Artificial Intelligence, 2023, 123: 106442.
[22] MISRA D, NALAMADA T, ARASANIPALAI A U, et al. Rotate to attend: convolutional triplet attention module[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2021: 3139-3148.
[23] ZHANG J, LI X, LI J, et al. Rethinking mobile block for efficient attention-based models[C]//Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision (ICCV), 2023: 1389-1400.
[24] DING X, ZHANG X, MA N, et al. Repvgg: making VGG-style convnets great again[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 13733-13742.
[25] DING X, ZHANG X, HAN J, et al. Diverse branch block: building a convolution as an inception-like unit[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 10886-10895.
[26] CUI Z T, QI G J, GU L, et al. Multitask AET with orthogonal tangent regularity for dark object detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 2553-2562.
[27] LIU W Y, REN G F, YU R S, et al. Image-adaptive YOLO for object detection in adverse weather conditions[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2022: 1792-1800.
[28] 谭豪, 张惊雷, 贾鑫. 基于多级特征提取的低光照目标检测算法[J]. 计算机工程与应用2024, 60(24): 235-242.
TAN H, ZHANG J L, JIA X. Low-light target detection algorithm based on multi-level feature extraction[J]. Computer Engineering and Applications, 2024, 60(24): 235-242.
[29] WANG J, YANG P, LIU Y, et al. Research on improved YOLOv5 for low-light environment object detection[J]. Electronics, 2023, 12(14): 3089.
[30] LIU R, MA L, ZHANG J, et al. Retinex-inspired unrolling with cooperative prior architecture search for low-light image enhancement[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 10561-10570.
[31] GUO C L, LI C Y, GUO J C, et al. Zero-reference deep curve estimation for low-light image enhancement[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 1780-1789. |