计算机工程与应用 ›› 2024, Vol. 60 ›› Issue (15): 42-54.DOI: 10.3778/j.issn.1002-8331.2401-0112
刘俊孚,岑健,黄汉坤,刘溪,赵必创,司伟伟
出版日期:
2024-08-01
发布日期:
2024-07-30
LIU Junfu, CEN Jian, HUANG Hankun, LIU Xi, ZHAO Bichuang, SI Weiwei
Online:
2024-08-01
Published:
2024-07-30
摘要: 随着数据时代的到来,基于数据驱动的故障诊断方法表现出了优秀的性能。深度学习应用于故障诊断以来,监督学习取得了巨大的发展,但当样本稀少或者缺失时,监督学习将缺乏训练的必要条件。提出了零小样本问题并分析了其在旋转机械故障诊断领域的现状;回顾了零小样本旋转机械故障诊断的发展历程、主流模型和当前研究热点;从零样本问题和小样本问题两个方面总结了现有研究成果并分析现有方法在零小样本问题中的应用。最后,展望了旋转机械故障诊断的零小样本方法的发展趋势。
刘俊孚, 岑健, 黄汉坤, 刘溪, 赵必创, 司伟伟. 零小样本旋转机械故障诊断综述[J]. 计算机工程与应用, 2024, 60(15): 42-54.
LIU Junfu, CEN Jian, HUANG Hankun, LIU Xi, ZHAO Bichuang, SI Weiwei. Review on Zero or Few Sample Rotating Machinery Fault Diagnosis[J]. Computer Engineering and Applications, 2024, 60(15): 42-54.
[1] RANE N. YOLO and faster R-CNN object detection for smart industry 4.0 and industry 5.0: applications, challenges, and opportunities[J]. Available at SSRN 4624206, 2023. [2] ZHANG K, XU Y, LIAO Z, et al. A novel fast entrogram and its applications in rolling bearing fault diagnosis[J]. Mechanical Systems and Signal Processing, 2021, 154: 107582. [3] 薄翠梅, 韩晓春, 易辉, 等.基于聚类选择[k]近邻的LLE算法及故障检测[J].化工学报, 2016, 67(3): 925-930. BO C M, HAN X C, YI H, et al. Neighborhood selection of LLE based on cluster for fault detection[J]. CIESC Journal, 2016, 67(3): 925-930. [4] ROGERS A P, GUO F, RASMUSSEN B P. A review of fault detection and diagnosis dethods for residential air conditioning systems[J]. Building and Environment, 2019, 161: 106236. [5] MIRNAGHI M S, HAGHIGHAT F. Fault detection and diagnosis of large-scale HVAC systems in buildings using data-driven methods: a comprehensive review[J]. Energy and Buildings, 2020, 229: 110492. [6] LIU Q, ZHU Q, QIN S J, et al. Dynamic concurrent kernel CCA for Strip-thickness relevant fault diagnosis of continuous snnealing processes[J]. Journal of Process Control, 2018, 67: 12-22. [7] GAO X, HOU J. An improved SVM integrated GS-PCA fault diagnosis spproach of tennessee eastman process[J]. Neurocomputing, 2016, 174: 906-911. [8] DENG X, TIAN X, HU X. Nonlinear process fault fiagnosis based on slow feature analysis[C]//Proceedings of the 10th World Congress on Intelligent Control and Automation, 2012: 3152-3156. [9] CHEN W, QIU Y, FENG Y, et al. Diagnosis of wind turbine faults with transfer learning algorithms[J]. Renewable Energy, 2021, 163: 2053-2067. [10] LI Y, JIANG W, ZHANG G, et al. Wind turbine fault diagnosis based on transfer learning and convolutional autoencoder with small-scale data[J]. Renewable Energy, 2021, 171: 103-115. [11] HYERS R W, MCGOWAN J G, SULLIVAN K L, et al. Condition monitoring and prognosis of utility scale wind turbines[J]. Energy Materials, 2006, 1(3): 187-203. [12] PORTOS J, GARNER K D, PARKER B, et al. Most common mechanisms and reasons for electric motor failures in petrochemical industry[C]//Proceedings of the 2015 IEEE Petroleum and Chemical Industry Committee Conference (PCIC), 2015: 1-11. [13] GARCIA M, PANAGIOTOU P A, ANTONINO-DAVIU J A, et al. Efficiency assessment of induction motors operating under different faulty conditions[J]. IEEE Transactions on Industrial Electronics, 2018, 66(10): 8072-8081. [14] LIU Z, ZHANG L. A review of failure modes, condition monitoring and fault diagnosis methods for large-scale wind turbine bearings[J]. Measurement, 2020, 149: 107002. [15] XIAN Y, SCHIELE B, AKATA Z. Zero-shot learning—the good, the bad and the ugly[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 4582-4591. [16] SUN X, GU J, SUN H. Research progress of zero-shot learning[J]. Applied Intelligence, 2021, 51: 3600-3614. [17] POURPANAH F, ABDAR M, LUO Y, et al. A review of generalized zero-shot learning methods[J]. IEEE Transactions on Pattern Snalysis and Machine Intelligence, 2023, 45(4): 4051-4070. [18] SOYSAL O A, GUZEL M S. An introduction to zero-shot learning: an essential review[C]//Proceedings of the 2020 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), 2020: 1-4. [19] FENG L, ZHAO J, ZHAO C. A systematic evaluation and benchmark for embedding-aware generative models: features, models, and any-shot scenarios[J]. arXiv: 2302.04060, 2023. [20] LU J, GONG P, YE J, et al. Learning from very few samples: a survey[J]. arXiv: 2009.02653, 2020. [21] CHEN W Y, LIU Y C, KIRA Z, et al. A closer look at few-shot classification[J]. arXiv: 1904.04232, 2019. [22] WANG Y, YAO Q, KWOK J T, et al. Generalizing from a few examples: a survey on few-shot learning[J]. ACM Computing Surveys (CSUR), 2020, 53(3): 1-34. [23] 司伟伟, 岑健, 伍银波, 等.小样本轴承故障诊断研究综述[J].计算机工程与应用, 2023, 59(6): 45-56. SI W W, CEN J, WU Y B, et al. Review of research on bearing fault diagnosis with small samples[J]. Computer Engineering and Applications, 2023, 59(6): 45-56. [24] FEI-FEI L, FERGUS R, PERONA P. One-shot learning of object categories[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(4): 594-611. [25] ROMERA-PAREDES B, TORR P. An embarrassingly simple approach to zero-shot learning[C]//Proceedings of the International Conference on Machine Learning, 2015: 2152-2161. [26] LONGADGE R, DONGRE S. Class imbalance problem in data mining review[J]. arXiv: 1305.1707, 2013. [27] YAGUO L E I, FENG J I A, DETONG K, et al. Opportunities and challenges of machinery intelligent fault diagnosis in big data era[J]. Journal of Mechanical Engineering, 2018, 54(5): 94-104. [28] SU H, XIANG L, HU A, et al. A novel method based on meta-learning for bearing fault diagnosis with small sample learning under different working conditions[J]. Mechanical Systems and Signal Processing, 2022, 169: 108765. [29] DING Y, MA L, MA J, et al. A generative adversarial network-based intelligent fault diagnosis method for rotating machinery under small sample size conditions[J]. IEEE Access, 2019, 7: 149736-149749. [30] XIAO D, HUANG Y, QIN C, et al. Transfer learning with convolutional neural networks for small sample size problem in machinery fault diagnosis[J]. Proceedings of The Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2019, 233(14): 5131-5143. [31] MENG Z, LI Q, SUN D, et al. An intelligent fault diagnosis method of small sample bearing based on improved auxiliary classification generative adversarial network[J]. IEEE Sensors Journal, 2022, 22(20): 19543-19555. [32] ZHAO X, MA M, SHAO F. Bearing fault diagnosis method based on improved siamese neural network with small sample[J]. Journal of Cloud Computing, 2022, 11(1): 1-17. [33] VINYALS O, TOSHEV A, BENGIO S, et al. Show and tell: a neural image caption generator[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 3156-3164. [34] REN Z, LIN T, FENG K, et al. A systematic review on imbalanced learning methods in intelligent fault diagnosis[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 1-35. [35] VILALTA R, DRISSI Y. A perspective view and survey of meta-learning[J]. Artificial Intelligence Review, 2002, 18: 77-95. [36] LAMPERT C H, NICKISCH H, HARMELING S. Learning to detect unseen object classes by between-class attribute transfer[C]//Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, 2009: 951-958. [37] ZHUO Y, GE Z. Auxiliary information-guided industrial data augmentation for any-shot fault learning and diagnosis[J]. IEEE Transactions on Industrial Informatics, 2021, 17(11): 7535-7545. [38] LV H, CHEN J, PAN T, et al. Hybrid attribute conditional adversarial denoising autoencoder for zero-shot classification of mechanical intelligent fault diagnosis[J]. Applied Soft Computing, 2020, 95: 106577. [39] XU J, ZHOU L, ZHAO W, et al. Zero-shot learning for compound fault diagnosis of bearings[J]. Expert Systems with Applications, 2022, 190: 116197. [40] CHEN G, LIU M, CHEN J. Frequency-temporal-logic-based bearing fault diagnosis and fault interpretation using Bayesian optimization with bayesian neural networks[J]. Mechanical Systems and Signal Processing, 2020, 145: 106951. [41] FENG L, ZHAO C. Transfer increment for generalized zero-shot learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 32(6): 2506-2520. [42] XIAN Y, LAMPERT C H, SCHIELE B, et al. Zero-shot learning—a comprehensive evaluation of the good, the bad and the ugly[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 41(9): 2251-2265. [43] BENGIO Y, DUCHARME R, VINCENT P. A neural probabilistic language model[C]//Advances in Neural Information Processing Systems, 2000. [44] ZHANG S, WEI H L, DING J. An effective zero-shot learning approach for intelligent fault detection using 1D CNN[J]. Applied Intelligence, 2023, 53(12): 16041-16058. [45] LU N, ZHUANG G, MA Z, et al. A zero-shot intelligent fault diagnosis system based on EEMD[J]. IEEE Access, 2022, 10: 54197-54207. [46] QIAO R, LIU L, SHEN C, et al. Less is more: zero-shot learning from online textual documents with noise suppression[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 2249-2257. [47] BUCHER M, HERBIN S, JURIE F. Improving semantic embedding consistency by metric learning for zero-shot classiffication[C]//Proceedings of the 14th European Conference on Computer Vision, Amsterdam, The Netherlands, October 11-14, 2016: 730-746. [48] SHIGETO Y, SUZUKI I, HARA K, et al. Ridge regression, hubness, and zero-shot learning[C]//Proceedings of the Joint European Conference on Machinelearning and Knowledge Discovery in Databases, 2015: 135-151. [49] AKATA Z, PERRONNIN F, HARCHAOUI Z, et al. Label-embedding for attribute-based classification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2013: 819-826. [50] FU Y, HOSPEDALES T M, XIANG T, et al. Transductive multi-view embedding for zero-shot recognition and annotation[C]//Proceedings of the 13th European Conference on Computer Vision, Zurich, Switzerland, September 6-12, 2014: 584-599. [51] AKATA Z, REED S, WALTER D, et al. Evaluation of output embeddings for fine-grained image classification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 2927-2936. [52] LEI BA J, SWERSKY K, FIDLER S. Predicting deep zero-shot convolutional neural networks using textual descriptions[C]//Proceedings of the IEEE International Conference on Computer Vision, 2015: 4247-4255. [53] SUN X, GU J, WANG M, et al. Wheel hub defects image recognition base on zero-shot learning[J]. Applied Sciences, 2021, 11(4): 1529. [54] BUCHER M, HERBIN S, JURIE F. Generating visual representations for zero-zhot classification[C]//Proceedings of the IEEE International Conference on Computer Vision Workshops, 2017: 2666-2673. [55] ALI F, IAN E, DEREK H, DAVID F. Describing objects by their attributes[C]//Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), 2009 : 1778-1785. [56] CHRISTOPH H L, HANNES N, STEFAN H. Attribute-based classification for zero-shot visual object categorization[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(3): 453-465. [57] PATTERSON G, HAYS J. Sun atribute database: discovering, annotating, and recognizing scene attributes[C]//Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, 2012: 2751-2758. [58] CATHERINE W, STEVE B, PETER W, et al.The Caltech-Ucsd Birds-200-2011 Dataset[Z].2011. [59] ZHANG L, XIANG T, GONG S. Learning a deep embedding model for zero-shot learning[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2021-2030. [60] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Advances In Neural Information Processing Systems, 2014. [61] KINGMA D P, WELLING M. Auto-encoding variational Bayes[J]. arXiv: 1312.6114, 2013. [62] XU J, LI K, FAN Y, et al. A label information vector generative zero-shot model for the diagnosis of compound faults[J]. Expert Systems with Applications, 2023, 233: 120875. [63] SARIYILDIZ M B, CINBIS R G. Gradient matching generative networks for zero-shot learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 2168-2178. [64] GORI M, MONFARDINI G, SCARSELLI F. A new model for learning in graph domains[C]//Proceedings of the 2005 IEEE International Joint Conference on Neural Networks, 2005: 729-734. [65] LI X, MA J, YU J, et al. A structure-enhanced generative adversarial network for knowledge graph zero-shot relational learning[J]. Information Sciences, 2023, 629: 169-183. [66] SOHN K, LEE H, YAN X. Learning structured output representation using deep conditional generative models[C]//Advances in Neural Information Processing Systems, 2015. [67] MIRZA M, OSINDERO S. Conditional generative adversarial nets[J]. arXiv: 1411.1784, 2014. [68] GULL M, ARIF O. Generating visual representations for zero-shot learning via adversarial learning and variational autoencoders[J]. International Journal of General Systems, 2023, 52(5): 636-651. [69] WU L, WU C, GUO H, et al. A cross-modal alignment for zero-shot image classification[J]. IEEE Access, 2023, 11: 9067-9073. [70] LI X, ZHANG D, YE M, et al. Bidirectional generative transductive zero-shot learning[J]. Neural Computing and Applications, 2021, 33: 5313-5326. [71] GUPTA A, NARAYAN S, KHAN S, et al. Generative multi-label zero-shot learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(12): 14611-14624. [72] LOPEZ R, REGIER J, JORDAN M I, et al. Information constraints on auto-encoding variational Bayes[C]//Advances in Neural Information Processing Systems, 2018. [73] BAO J, CHEN D, WEN F, et al. CVAE-GAN: fine-grained image generation through asymmetric training[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 2745-2754. [74] WANG T, WAN X. T-CVAE: transformer-based conditioned variational autoencoder for story completion[C]//Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, 2019: 5233-5239. [75] QIAN J, ELSHERIEF M, BELDING E, et al. Hierarchical CVAE for fine-grained hate speech classification[J]. arXiv: 1809.00088, 2018. [76] BIAN J, HUI X, SUN S, et al. A novel and efficient CVAE-GAN-based approach with informative manifold for semi-supervised anomaly detection[J]. IEEE Access, 2019, 7: 88903-88916. [77] SOCHER R, GANJOO M, MANNING C D, et al. Zero-shot learning through cross-modal transfer[C]//Advances in Neural Information Processing Systems, 2013. [78] XU J, ZHANG H, ZHOU L, et al. Zero-shot compound fault diagnosis method based on semantic learning and discriminative features[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 1-13. [79] LOTFOLLAHI M, NAGHIPOURFAR M, THEIS F J, et al. Conditional out-of-distribution generation for unpaired data using transfer VAE[J]. Bioinformatics, 2020, 36(S2): 610-617. [80] SOHL-DICKSTEIN J, WEISS E, MAHESWARANATHAN N, et al. Deep unsupervised learning using nonequilibrium thermodynamics[C]//Proceedings of the International Conference on Machine Learning, 2015: 2256-2265. [81] ROMBACH R, BLATTMANN A, LORENZ D, et al. High-resolution image synthesis with latent diffusion models[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 10684-10695. [82] LUO H, QIU H, GHANIME G, et al. Synthesized synchronous sampling technique for differential bearing damage detection[J]. Journal of Engineering for Gas Turbines and Power-Transactions of the Asme 2010, 132(7): 072501. [83] FARAJZADEH-ZANJANI M, RAZAVI-FAR R, SAIF M. Efficient sampling techniques for ensemble learning and diagnosing bearing defects under class imbalanced condition[C]//Proceedings of the 2016 IEEE Symposium Series on Computational Intelligence (SSCI), 2016: 1-7. [84] CEN J, YANG Z H, WUY B, et al.A mask self-supervised learning-based transformer for bearing fault diagnosis with limited labeled samples[J]. IEEE Sensors Journal, 2023, 23(10): 10359-10369. [85] 符杨, 周全, 贾锋, 等.基于SCADA数据图形化的海上风电机组故障预测[J].中国电机工程学报, 2022, 42(20): 7465-7475. FU Y, ZHOU Q, JIA F, et al. Fault prediction of offshore wind turbines based on graphical processing of SCADA data[J]. Proceedings of the CSEE, 2022, 42(20): 7465-7475. [86] CHEN Y, PENG G, XIE C, et al. ACDIN: bridging the gap between artificial and real bearing damages for bearing fault diagnosis[J]. Neurocomputing, 2018, 294: 61-71. [87] KIRANYAZ S, DEVECIOGLU O C, ALHAMS A, et al. Zero-shot motor health monitoring by blind domain transition[J]. Mechanical Systems and Signal Processing, 2024, 210: 111147. [88] CHEN Z, WU J, DENG C, et al. Deep attention relation network: a zero-shot learning method for bearing fault diagnosis under unknown domains[J]. IEEE Transactions on Reliability, 2022, 72(1): 79-89. [89] CHENG L, AN Z, GUO Y, et al. MMFSL: a novel multi-modal few-shot learning framework for fault diagnosis of industrial bearings[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 1-13. |
[1] | 窦智, 高浩然, 刘国奇, 常宝方. 轻量化YOLOv8的小样本钢板缺陷检测算法[J]. 计算机工程与应用, 2024, 60(9): 90-100. |
[2] | 李厚君, 韦柏全. 属性蒸馏的零样本识别方法[J]. 计算机工程与应用, 2024, 60(9): 219-227. |
[3] | 刘牧云, 卞春江, 陈红珍. 基于特征解耦的少样本遥感飞机图像增广算法[J]. 计算机工程与应用, 2024, 60(9): 244-253. |
[4] | 周伯俊, 陈峙宇. 基于深度元学习的小样本图像分类研究综述[J]. 计算机工程与应用, 2024, 60(8): 1-15. |
[5] | 刘明, 杜建强, 李郅琴, 罗计根, 聂斌, 张梦婷. 融合Lasso的近似马尔科夫毯特征选择方法[J]. 计算机工程与应用, 2024, 60(8): 121-130. |
[6] | 丁政伟, 白鹤翔, 胡深. 多尺度深层特征加强的CME小样本目标检测模型[J]. 计算机工程与应用, 2024, 60(6): 222-229. |
[7] | 阮慧, 黄细霞, 李登峰, 王乐. 滚动轴承细粒度故障诊断研究[J]. 计算机工程与应用, 2024, 60(6): 312-322. |
[8] | 张会云, 黄鹤鸣. 面向不平衡数据集的语音情感识别研究[J]. 计算机工程与应用, 2024, 60(4): 122-132. |
[9] | 方红, 李德生, 蒋广杰. 高效跨域的Transformer小样本语义分割网络[J]. 计算机工程与应用, 2024, 60(4): 142-152. |
[10] | 张多纳, 赵宏佳, 鲁远耀, 崔健, 张宝昌. 融入注意力机制的小样本遥感图像场景分类[J]. 计算机工程与应用, 2024, 60(4): 173-182. |
[11] | 傅饶, 房建东, 赵于东. 无监督缺失值预测的运动目标检测算法[J]. 计算机工程与应用, 2024, 60(4): 220-228. |
[12] | 杨玮, 钟名锋, 杨根, 侯至丞, 王卫军, 袁海. 基于NVAE和OB-Mix的小样本数据增强方法[J]. 计算机工程与应用, 2024, 60(2): 103-112. |
[13] | 邓戈龙, 黄国恒, 陈紫嫣. 图神经网络的类别解耦小样本分类[J]. 计算机工程与应用, 2024, 60(2): 129-136. |
[14] | 李莎莎, 石颉. 面向感应电机故障诊断的深度学习方法研究[J]. 计算机工程与应用, 2024, 60(14): 329-336. |
[15] | 谢锋云, 李刚, 王玲岚, 刘慧, 汪淦. 改进时序灰度图和深度学习的齿轮箱故障诊断[J]. 计算机工程与应用, 2024, 60(13): 338-344. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||