[1] 罗旭东, 吴一全, 陈金林. 无人机航拍影像目标检测与语义分割的深度学习方法研究进展[J]. 航空学报, 2024, 45(6): 235-264.
LUO X D, WU Y Q, CHEN J L. Research progress on deep learning methods for object detection and semantic segmentation in UAV aerial images[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 235-264.
[2] 叶回春, 陈森政, 郭安廷, 等. 香蕉枯萎病无人机多光谱影像数据集[J]. 中国科学数据 (中英文网络版), 2024, 9(2): 1-8.
YE H C, CHEN S Z, GUO A T, et al. A dataset of UAV multispectral images for a banana Fusarium wilt survey[J]. China Scientific Data, 2024, 9(2): 1-8.
[3] 杨佳乐. 基于无人机遥感影像的三维道路线形识别[D]. 桂林: 桂林理工大学, 2023.
YANG J L. Three-dimensional road linear identification based on UAV remote sensing image[D]. Guilin: Guilin University of Technology, 2023.
[4] EVERINGHAM M, ESLAMI S A, VAN GOOL L, et al. The pascal visual object classes challenge: a retrospective[J]. International Journal of Computer Vision, 2015, 111: 98-136.
[5] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft coco: common objects in context[C]//Proceedings of 13th European Conference on Computer Vision, Zurich, Switzerland, September 6-12, 2014. [S.l.]: Springer, 2014: 740-755.
[6] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of 14th European Conference on Computer Vision (ECCV 2016), Amsterdam, The Netherlands, October 11-14, 2016. [S.l.]: Springer, 2016: 21-37.
[7] LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2117-2125.
[8] LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 8759-8768.
[9] TAN M, PANG R, LE Q V. Efficientdet: scalable and efficient object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 10781-10790.
[10] 赵珊, 郑爱玲, 刘子路, 等. 通道分离双注意力机制的目标检测算法[J]. 计算机科学与探索, 2023, 17(5): 1112-1125.
ZHAO S, ZHENG A L, LIU Z L, et al. Object detection algorithm based on channel separation dual attention mechanism[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(5): 1112-1125.
[11] 李安达, 吴瑞明, 李旭东. 改进YOLOv7的小目标检测算法研究[J]. 计算机工程与应用, 2024, 60(1): 122-134.
LI A D, WU R M, LI X D. Research on improving YOLOv7’s small target detection algorithm[J]. Computer Engineering and Applications, 2024, 60(1): 122-134.
[12] ZHANG G, LI Z, LI J, et al. CFNET: cascade fusion network for dense prediction[J]. arXiv:2302.06052, 2023.
[13] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 7464-7475.
[14] 张光华, 李聪发, 李钢硬, 等. 基于改进YOLOv7-tiny的无人机航拍图像小目标检测算法[J/OL]. 工程科学与技术: 1-14(2024-04-19). https://doi.org/10.15961/j.jsuese.202300593.
ZHANG G H, LI C F, LI G Y, et al. Small target detection algorithm for UAV aerial images based on improved YOLOv7-tiny[J/OL]. Advanced Engineering Sciences: 1-14(2024-04-19). https://doi.org/10.15961/j.jsuese.202300593.
[15] TROCKMAN A, KOLTER J Z. Patches are all you need?[J]. arXiv:2201.09792, 2022.
[16] 赵鑫, 陈里里 , 杨维川, 等. DY-YOLOv5: 基于多重注意力机制的航拍图像目标检测[J]. 计算机工程与应用, 2024, 60(7): 183-191.
ZHAO X, CHEN L L, YANG W C, et al. DY-YOLOv5: target detection for aerial image based on multiple attention[J]. Computer Engineering and Applications, 2024, 60(7): 183-191.
[17] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 4700-4708.
[18] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
[19] 赵耘彻, 张文胜, 刘世伟. 基于改进YOLOv4的无人机航拍目标检测算法[J]. 电子测量技术, 2023, 46(8): 169-175.
ZHAO Y C, ZHANG W S, LIU S W. UAV aerial object detection algorithm based on improved YOLOv4[J]. Electronic Measurement Technology, 2023, 46(8): 169-175.
[20] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. Yolov4: optimal speed and accuracy of object detection[J]. arXiv:2004.10934, 2020.
[21] HOWARD A, SANDLER M, CHU G, et al. Searching for mobilenetv3[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 1314-1324.
[22] ARTHUR D, VASSILVITSKII S. K-means++ the advantages of careful seeding[C]//Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, 2007: 1027-1035.
[23] 薛珊, 卢涛, 吕琼莹, 等. 基于多尺度融合和轻量化网络的无人机目标检测算法[J]. 湖南大学学报 (自然科学版), 2023, 50(8): 82-93.
XUE S, LU T, LYU Q Y, et al. Drone target detection algorithm based on multi-scale fusion and lightweight network[J]. Journal of Hunan University (Natural Sciences), 2023, 50(8): 82-93.
[24] 白宇, 周艳媛, 安胜彪. 改进YOLOv5的无人机小目标检测方法研究[J]. 计算机工程与应用, 2024, 60(10): 276-284.
BAI Y, ZHOU Y Y, AN S B. Research on UAV small object detection method improved by YOLOv5[J]. Computer Engineering and Applications, 2024, 60(10): 276-284.
[25] LIU S, HUANG D, WANG Y. Learning spatial fusion for single-shot object detection[J]. arXiv:1911.09516, 2019.
[26] WOO S, PARK J, LEE J Y, et al. Cbam: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 3-19.
[27] ZHENG Z, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 12993-13000.
[28] CAO Y, HE Z, WANG L, et al. VisDrone-DET2021: the vision meets drone object detection challenge results[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 2847-2854.
[29] YU X, GONG Y, JIANG N, et al. Scale match for tiny person detection[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2020: 1257-1265.
[30] 刘展威, 陈慈发, 董方敏. 基于YOLOv5s的航拍小目标检测改进算法研究[J]. 无线电工程, 2023, 53(10): 2286-2294.
LIU Z W, CHEN C F, DONG F M. Improved aerial small object detection algorithm based on YOLOv5s[J]. Radio Engineering, 2023, 53(10): 2286-2294.
[31] LI Z, PENG C, YU G, et al. Light-head R-CNN: in defense of two-stage object detector[J]. arXiv:1711.07264, 2017.
[32] LAW H, DENG J. Cornernet: detecting objects as paired keypoints[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 734-750.
[33] 冒国韬, 邓天民, 于楠晶. 基于多尺度分割注意力的无人机航拍图像目标检测算法[J]. 航空学报, 2023, 44(5): 273-283.
MAO G T, DENG T M, YU N J. Object detection in UAV images based on multi-scale split attention[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(5): 273-283.
[34] JIANG B, QU R, LI Y, et al. VC-YOLO: towards real-time object detection in aerial images[J]. Journal of Circuits, Systems and Computers, 2022, 31(8): 2250147.
[35] 陈卫彪, 贾小军, 朱响斌, 等. 基于DSM-YOLO v5的无人机航拍图像目标检测[J]. 计算机工程与应用, 2023, 59(18): 226-233.
CHEN W B, JIA X J, ZHU X B, et al. Target detection for UAV image based on DSM-YOLO v5[J]. Computer Engineering and Applications, 2023, 59(18): 226-233.
[36] GE Z, LIU S, WANG F, et al. YOLOX: exceeding YOLO series in 2021[J]. arXiv:2107.08430, 2021.
[37] ZHU X, LYU S, WANG X, et al. TPH-YOLOv5: improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 2778-2788.
[38] SUNKARA R, LUO T. No more strided convolutions or pooling: a new CNN building block for low-resolution images and small objects[M/OL]//AMINI M R, CANU S, FISCHER A, et al. Machine learning and knowledge discovery in databases. Cham: Springer Nature Switzerland, 2023: 443-459.
[39] CHEN H, LIU H, SUN T, et al. MC-YOLOv5: a multi-class small object detection algorithm[J]. Biomimetics, 2023, 8(4): 342.
[40] 李钟华, 林初俊, 朱恒亮, 等. 基于结构感知和全局上下文信息的小目标检测[J]. 计算机工程与应用, 2024, 60(9): 292-298.
LI Z H, LIN C J, ZHU H L, et al. Small object detection based on structure perception and global context information[J]. Computer Engineering and Applications, 2024, 60(9): 292-298. |