[1] KUMAR S, MOHBEY K K. A review on big data based parallel and distributed approaches of pattern mining[J]. Journal of King Saud University-Computer and Information Sciences, 2022, 34(5): 1639-1662.
[2] HAN M, ZHANG N, WANG L, et al. Mining closed high utility patterns with negative utility in dynamic databases[J]. Applied Intelligence, 2023, 53(10): 11750-11767.
[3] LIN J C W, DJENOURI Y, SRIVASTAVA G, et al. A predictive GA-based model for closed high-utility itemset mining[J]. Applied Soft Computing, 2021, 108: 107422.
[4] FOURNIER-VIGER P, WANG Y, LIN J C W, et al. Mining cross-level high utility itemsets[C]//Proceedings of the International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, Kitakyushu, Japan, Sep 22-25, 2020. Cham, Switzerland: Springer, 2020: 858-871.
[5] 张莹莹. 一种多维多层的关联规则挖掘算法在教育数据上的应用[D]. 长春: 吉林大学, 2017.
ZHANG Y Y. Mining multidimensional and multilevel association rules in educational data[D]. Changchun: Jilin University, 2017.
[6] ZHONG M, JIANG T, HONG Y, et al. Performance of multi-level association rule mining for the relationship between causal factor patterns and flash flood magnitudes in a humid area[J]. Geomatics, Natural Hazards and Risk, 2019, 10(1): 1967-1987.
[7] SRIKANT R, AGRAWAL R. Mining generalized association rules[J]. Future Generation Computer Systems, 1997, 13(2/3): 161-180.
[8] HIPP J, MYKA A, WIRTH R, et al. A new algorithm for faster mining of generalized association rules[C]//Proceedings of the Principles of Data Mining and Knowledge Discovery: Second European Symposium, Nantes, France, Sep 23-26, 1998. Berlin, Heidelberg: Springer, 2006: 74-82.
[9] SRIPHAEW K, THEERAMUNKONG T. A new method for finding generalized frequent itemsets in generalized association rule mining[C]//Proceedings of the ISCC 2002 Seventh International Symposium on Computers and Communications, Taormina-Giardini Naxos, Italy, Jul 1-4, 2002. Los Alamitos, CA: IEEE Computer Society, 2002: 1040-1045.
[10] BARALIS E, CAGLIERO L, CERQUITELLI T, et al. Generalized association rule mining with constraints[J]. Information Sciences, 2012, 194: 68-84.
[11] CAGLIERO L, CHIUSANO S, GARZA P, et al. Discovering high-utility itemsets at multiple abstraction levels[C]//Proceedings of the European Conference on Advances in Databases and Information Systems, Nicosia, Cyprus, Sep 24-27, 2017. Cham, Switzerland: Springer, 2017: 224-234.
[12] TUNG N, NGUYEN L T, NGUYEN T D, et al. Efficient mining of cross-level high-utility itemsets in taxonomy quantitative databases[J]. Information Sciences, 2022, 587: 41-62.
[13] NOUIOUA M, WANG Y, FOURNIER-VIGER P, et al. Tkc: mining top-k cross-level high utility itemsets[C]//Proceedings of the 2020 International Conference on Data Mining Workshops, Sorrento, Italy, Nov, 17-20, 2020. New York: IEEE, 2021: 673-682.
[14] CHU C J, TSENG V S, LIANG T. An efficient algorithm for mining temporal high utility itemsets from data streams[J]. Journal of Systems and Software, 2008, 81(7): 1105-1117.
[15] RYANG H, YUN U. High utility pattern mining over data streams with sliding window technique[J]. Expert Systems with Applications, 2016, 57: 214-231.
[16] JAYSAWAL B P, HUANG J W. Sohupds: a single-pass one-phase algorithm for mining high utility patterns over a data stream[C]//Proceedings of the 35th Annual ACM Symposium on Applied Computing, Brno, Czech Republic, Mar 30-Apr 3, 2020. New York: ACM, 2020: 490-497.
[17] LEE C, RYU T, KIM H, et al. Efficient approach of sliding window-based high average-utility pattern mining with list structures[J]. Knowledge-Based Systems, 2022, 256: 109702.
[18] DAWAR S, SHARMA V, GOYAL V. Mining top-k high-utility itemsets from a data stream under sliding window model[J]. Applied Intelligence, 2017, 47(4): 1240-1255.
[19] 程浩东, 韩萌, 张妮, 等. 基于滑动窗口模型的数据流闭合高效用项集挖掘[J]. 计算机研究与发展, 2021, 58(11): 2500-2514.
CHENG H D, HAN M, ZHANG N, et al. Closed high utility itemsets mining over data stream based on sliding window model[J]. Journal of Computer Research and Development, 2021, 58(11): 2500-2514. |