[1] FENG C, TIAN P. Time series anomaly detection for cyber-physical systems via neural system identification and Bayesian filtering[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, 2021.
[2] WU H S. A survey of research on anomaly detection for time series[C]//Proceedings of the 13th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP), 2016.
[3] COOK A A, MISIRLI G, FAN Z. Anomaly detection for IoT time-series data: a survey[J]. IEEE Internet of Things Journal, 2020, 7(7): 6481-6494.
[4] AUDIBERT J, MICHIARDI P, GUYARD F, et al. Do deep neural networks contribute to multivariate time series anomaly detection?[J]. Pattern Recogntion, 2022: 132: 108945.
[5] 张锦, 程良伦. 一种分布式CPS异常检测的无监督图模型[J]. 计算机工程与应用, 2018, 54(12): 110-115.
ZHANG J, CHENG L L. Unsupervised graphical model for anomaly detection in distributed CPS[J]. Computer Engineering and Applications, 2018, 54(12): 110-115.
[6] DARBAN Z. Z, WEBB G. I, PAN S, et al. Deep learning for time series anomaly detection: a survey[J]. arXiv:2211.05244, 2022.
[7] LINDEMANN B, MüLLER T, VIETZ H, et al. A survey on long short-term memory networks for time series prediction[J]. Procedia CIRP, 2021, 99: 650-655.
[8] JIN M, KOH H Y, WEN Q, et al. A survey on graph neural networks for time series: forecasting, classification, imputation, and anomaly detection[J]. arXiv:2307.03759, 2023.
[9] KIM H, LEE B, SHIN W Y, et al. Graph anomaly detection with graph neural networks: current status and challenges[J]. IEEE Access, 2022, 10: 111820-111829.
[10] YU Q, LYU J, JIANG L. An improved ARIMA-based traffic anomaly detection algorithm for wireless sensor networks[J]. International Journal of Distributed Sensor Networks, 2016, 12(1): 9653230.
[11] MELNYK I, MATTHEWS B, VALIZADEGAN H, et al. Vector autoregressive model-based anomaly detection in aviation systems[J]. Journal of Aerospace Information Systems, 2016: 13(4): 161-173.
[12] AMER M, GOLDSTEIN M, ABDENNADHER S. Enhancing one-class support vector machines for unsupervised anomaly detection[C]//Proceedings of the ACM SIGKDD Workshop on Outlier Detection and Description, 2013: 8-15.
[13] DENG H, RUNGER G, TUV E, et al. A time series forest for classification and feature extraction[J]. Information Sciences, 2013, 239: 142-153.
[14] CHOI K, YI J, PARK C, et al. Deep learning for anom aly detection in time-series data: review, analysis, and guidelines[J]. IEEE Access, 2021, 9: 120043-120065.
[15] 惠飞, 郭静, 贾硕, 等. 基于双向长短记忆网络的异常驾驶行为检测[J]. 计算机工程与应用, 2020, 56(24): 116-122.
HUI F, GUO J, JIA S, et al. Detection of abnormal driving behavior based on BiLSTM[J]. Computer Engineering and Applications, 2020, 56(24): 116-122.
[16] ZHANG H, XIA Y, YAN T, et al. Unsupervised anomaly detection in multivariate time series through transformer-based variational autoencoder[C]//Proceedings of the 33rd Chinese Control and Decision Conference (CCDC), 2021: 281-286.
[17] 安磊, 韩忠华, 林硕, 等. 面向网络入侵检测的GAN-SDAE-RF模型研究[J]. 计算机工程与应用, 2021, 57(21): 155-164.
AN L, HAN Z H, LIN S, et al. Research on GAN-SDAE-RF model for network intrusion detection[J]. Computer Engineering and Applications, 2021, 57(21): 155-164.
[18] LI D, CHEN D, JIN B, et al. MAD-GAN: multivariate anomaly detection for time series data with generative adversarial networks[C]//Proceedings of the International Conference on Artificial Neural Networks. Cham: Springer International Publishing, 2019: 703-716.
[19] PARK D, HOSHI Y, KEMP C C. A multimodal anomaly detector for robot-assisted feeding using an LSTM-based variational autoencoder[J]. IEEE Robotics and Automation Letters, 2018, 3(3): 1544-1551.
[20] HAN S, WOO S S. Learning sparse latent graph representations for anomaly detection in multi-variate time series[C]//Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2022: 2977-2986.
[21] ZHOU J, CUI G, HU S, et al. Graph neural networks: a review of methods and applications[J]. AI Open, 2020, 1: 57-81.
[22] KIPF T, WELLING M. Semi-supervised classification with graph convolutional networks[J]. arXiv:1609.02907, 2016.
[23] KIPF T, WELLING M. Variational graph auto-encoders[J]. arXiv:1611.07308, 2016.
[24] FENG Y, CHEN J, LIU Z, et al. Full graph autoencoder for one-class group anomaly detection of IIoT system[J]. IEEE Internet of Things Journal, 2022, 9(21): 21886-21898.
[25] VELI?KOVI? P, CUCURULL G, CASANOVA A, et al. Graph attention networks[J]. arXiv:1710.10903, 2017.
[26] ZHAO H, WANG Y, DUAN J, et al. Multivariate time-series anomaly detection via graph attention network[C]//Proceedings of the IEEE International Conference on Data Mining (ICDM), 2020: 841-850.
[27] GUAN S, ZHAO B, DONG Z, et al. GTAD: graph and temporal neural network for multivariate time series anomaly detection[J]. Entropy, 2022, 24(6): 759.
[28] DENG A, HOOI B. Graph neural network-based anomaly detection in multivariate time series[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2022: 4027-4035.
[29] RAY S, LAKDAWALA S, GOSWAMI M, et al. Learning graph neural networks for multivariate time series anomaly detection[J]. arXiv:2111.08082, 2021.
[30] HE Z, GAO S, XIAO L, et al. Wider and deeper, cheaper and faster: tensorized LSTMs for sequence learning[C]//Neural Information Processing Systems, 2017: 1-11.
[31] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems, 2017: 5998-6008.
[32] SHYU M L, CHEN S C, SARINNAPAKORN K, et al. A novel anomaly detection scheme based on princpal component classifier[C]//Proceedings of the IEEE Foundations and New Directions of Data Mining Workshop, 2003: 172-179.
[33] ANGIULLI F, PIZZUTI C. Fast outlier detection in high dimensional spaces[C]//Proceedings of the European Conference on Principles of Data Mining and Knowledge Discovery, 2002: 15-27.
[34] SAKURADA M, YAIRI T. Anomaly detection using autoencoders with nonlinear dimensionality reduction[C]//Proceedings of the MLSDA 2nd Workshop on Machine Learning for Sensory Data Analysis, 2014 : 4-11.
[35] ZONG B, SONG Q, MIN M, et al. Deep autoencoding Gaussian mixture model for unsupervised anomaly detection[C]//Proceedings of the International Conference on Learning Representations, 2018. |