计算机工程与应用 ›› 2020, Vol. 56 ›› Issue (14): 138-147.DOI: 10.3778/j.issn.1002-8331.1905-0031
胡阳,胡学钢,李培培
HU Yang, HU Xuegang, LI Peipei
摘要:
微博、脸书等社交网络平台涌现的短文本数据流具有海量、高维稀疏、快速可变等特性,使得短文本数据流分类面临着巨大挑战。已有的短文本数据流分类方法难以有效地解决特征高维稀疏问题,并且在处理海量数据流时时间代价较高。基于此,提出一种基于Spark的分布式快速短文本数据流分类方法。一方面,利用外部语料库构建Word2vec词向量模型解决了短文本的高维稀疏问题,并构建扩展词向量库以适应文本的快速可变性,提出一种LR分类器集成模型用于短文本数据流分类,该分类器使用一种FTRL方法实现模型参数的在线更新,并引入时间因子加权机制以适应概念漂移环境;另一方面,所提方法的使用分布式处理提高了海量短文本数据流的处理效率。在3个真实短文本数据流上的实验表明:所提方法在提高分类精度的同时,降低了时间消耗。