计算机工程与应用 ›› 2024, Vol. 60 ›› Issue (11): 32-49.DOI: 10.3778/j.issn.1002-8331.2310-0335

• 热点与综述 • 上一篇    下一篇

基于U-Net变体的医学图像分割算法综述

崔珂,田启川,廉露   

  1. 北京建筑大学 电气与信息工程学院,北京 100044
  • 出版日期:2024-06-01 发布日期:2024-05-31

Review of Medical Image Segmentation Algorithms Based on U-Net Variants

CUI Ke, TIAN Qichuan, LIAN Lu   

  1. College of Electrical and Information Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
  • Online:2024-06-01 Published:2024-05-31

摘要: U-Net简单高效的网络结构,被广泛应用于医学图像分割任务中,学者们针对U-Net结构进行了很多的研究和改进。基于U-Net网络结构的改进方法从以下方面进行归纳总结:总结了U-Net网络在医学图像分割领域的关键挑战;归纳了常用于U-Net网络的医学图像数据集格式及特点;重点总结U-Net和U-Net变体算法六大改进机制:跳跃连接机制、生成对抗网络、残差连接机制、3D-UNet、Transformer机制、密集连接机制。最后,探讨六大改进机制与常用医学数据之间的关系,并指出未来改进思路和方向,激发U-Net在医学图像分割的无限潜力。

关键词: U-Net变体, 医学图像分割, 语义分割, 深度学习, 改进机制

Abstract: The simple and efficient network structure of U-Net is widely used in medical image segmentation, and many scholars have made various researches on the U-Net structure. This paper elucidates in the following: firstly, the paper summarizes the key challenges of the U-Net network in the field of medical image segmentation; next, it elaborates the formats and characteristics of medical image datasets that are commonly used in the U-Net network; then, it summarizes the six improvement mechanism of U-Net:skip connection mechanism, generative adversarial network, residual connection mechanism, 3D-UNet, Transformer mechanism, and dense connecting mechanism. Finally, the paper discusses the relationship between these improvement mechanisms and commonly used medical data formats, and points out the ideas and directions for future improvement, so as to stimulate the unlimited potential of U-Net in medical image segmentation.

Key words: U-Net variants, medical image segmentation, semantic segmentation, deep learning, improved mechanism