计算机工程与应用 ›› 2024, Vol. 60 ›› Issue (1): 15-27.DOI: 10.3778/j.issn.1002-8331.2304-0398
赵继贵,钱育蓉,王魁,侯树祥,陈嘉颖
出版日期:
2024-01-01
发布日期:
2024-01-01
ZHAO Jigui, QIAN Yurong, WANG Kui, HOU Shuxiang, CHEN Jiaying
Online:
2024-01-01
Published:
2024-01-01
摘要: 命名实体识别(named entity recognition,NER)是自然语言处理中最基本的任务之一,其主要内容是识别自然语言文本中具有特定意义的实体类型和边界。然而,中文命名实体识别(Chinese named entity recognition,CNER)的数据样本存在词边界模糊、语义多样化、形态特征模糊以及中文语料库内容较少等问题,导致中文命名实体识别性能难以大幅提升。介绍了CNER的数据集、标注方案和评价指标。按照CNER的研究进程,将CNER方法分为基于规则的方法、基于统计的方法和基于深度学习的方法三类,并对近五年来基于深度学习的CNER主要模型进行总结。探讨CNER的研究趋势,为新方法的提出和未来研究方向提供一定参考。
赵继贵, 钱育蓉, 王魁, 侯树祥, 陈嘉颖. 中文命名实体识别研究综述[J]. 计算机工程与应用, 2024, 60(1): 15-27.
ZHAO Jigui, QIAN Yurong, WANG Kui, HOU Shuxiang, CHEN Jiaying. Survey of Chinese Named Entity Recognition Research[J]. Computer Engineering and Applications, 2024, 60(1): 15-27.
[1] GRISHMAN R, SUNDHEIM B. Message Understanding Conference-6: a brief history[C]//COLING 1996 Volume 1: The 16th International Conference on Computational Linguistics, Copenhagen, Denmark. August 5-9, 1996: 466-471. [2] KHALID M A, JIJKOUN V, DE RIJKE M. The impact of named entity normalization on information retrieval for question answering[C]//Advances in Information Retrieval: 30th European Conference on IR Research (ECIR 2008), Glasgow, UK, March 30-April 3, 2008. Berlin, Heidelberg: Springer, 2008: 705-710. [3] RIEDEL S, YAO L, MCCALLUM A, et al. Relation extraction with matrix factorization and universal schemas[C]//Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Atlanta, Georgia, USA, June 9-14, 2013: 74-84. [4] DIEFENBACH D, LOPEZ V, SINGH K, et al. Core techniques of question answering systems over knowledge bases: a survey[J]. Knowledge and Information Systems, 2018, 55: 529-569. [5] WANG Z, CUI X, GAO L, et al. A hybrid model of sentimental entity recognition on mobile social media[J]. EURASIP Journal on Wireless Communications and Networking, 2016, 2016(1): 1-12. [6] SETTLES B. Biomedical named entity recognition using conditional random fields and rich feature sets[C]//Proceedings of the International Joint Workshop on Natural Language Processing in Biomedicine and Its Applications, Geneva, Switzerland, August 6, 2004: 107-110. [7] 罗媛媛, 杨春明, 李波, 等. 融合机器阅读理解的中文医学命名实体识别方法[J]. 计算机科学, 2023, 50(9): 287-294. LUO Y Y, YANG C M, LI B, et al. Chinese medical named entity recognition method incorporating machine reading comprehension[J]. Computer Science, 2023, 50(9): 287-294. [8] KARATAY D, KARAGOZ P. User interest modeling in twitter with named entity recognition[C]//5th Workshop on Making Sense of Microposts, Florence, Italy, May 19, 2015: 35-38. [9] LIU K, YU Q S, ZHONG S Y. Chinese named entity recognition based on bi-directional quasi-recurrent neural networks improved with BERT: new method to solve Chinese NER[C]//2021 the 5th International Conference on Innovation in Artificial Intelligence, Chengdu, China, May 28-30, 2021: 15-19. [10] WANG W, CHANG L, BIN C, et al. ESN-NER: entity storage network using attention mechanism for Chinese NER[C]//Proceedings of the International Conference on Artificial Intelligence, Information Processing and Cloud Computing, Harbin, China, July 19-21, 2019: 1-8. [11] ZHU P, CHENG D, YANG F, et al. Improving Chinese named entity recognition by large-scale syntactic dependency graph[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2022, 30: 979-991. [12] LIU P, GUO Y, WANG F, et al. Chinese named entity recognition: the state of the art[J]. Neurocomputing, 2022, 473: 37-53. [13] XU L, DONG Q, LIAO Y, et al. CLUENER2020: fine-grained named entity recognition dataset and benchmark for Chinese[J]. arXiv:2001.04351, 2020. [14] REIMERS N, GUREVYCH I. Optimal hyperparameters for deep LSTM-networks for sequence labeling tasks[J]. arXiv:1707.06799, 2017. [15] LI J, SUN A, HAN J, et al. A survey on deep learning for named entity recognition[J]. IEEE Transactions on Knowledge and Data Engineering, 2020, 34(1): 50-70. [16] HANISCH D, FUNDEL K, MEVISSEN H T, et al. ProMiner: rule-based protein and gene entity recognition[J]. BMC Bioinformatics, 2005, 6(1): 1-9. [17] AKKASI A, VAROGLU E, DIMILIER N. ChemTok: a new rule based tokenizer for chemical named entity recognition[J]. BioMed Research International, 2016, 2016 : 4248026. [18] QUIMBAYA A P, MUNERA A S, RIVERA R A G, et al. Named entity recognition over electronic health records through a combined dictionary-based approach[J]. Procedia Computer Science, 2016, 100: 55-61. [19] COLLINS M, SINGER Y. Unsupervised models for named entity classification[C]//1999 Joint SIGDAT Conference on Empirical Methods in Natural Language Processing and Very Large Corpora, Maryland, USA, June 17-19, 1999: 100-107. [20] 王宁, 葛瑞芳, 苑春法, 等. 中文金融新闻中公司名的识别[J]. 中文信息学报, 2002, 16(2): 1-6. WANG N, GE R F, YUAN C F, et al. Company name identification in Chinese financial domain[J]. Journal of Chinese Information Processing, 2002, 16(2): 1-6. [21] ZHOU G D, SU J. Named entity recognition using an HMM-based chunk tagger[C]//Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, Philadelphia, Pennsylvania, USA, July 6-12, 2002: 473-480. [22] TSAI R T, HUNG H, SUNG C, et al. On closed task of Chinese word segmentation: an improved CRF model coupled with character clustering and automatically generated template matching[C]//Proceedings of the Fifth SIGHAN Workshop on Chinese Language Processing, Sydney, Australia, July 22-23, 2006: 1-8. [23] FRESKO M, ROSENFELD B, FELDMAN R. A hybrid approach to NER by MEMM and manual rules[C]//Proceedings of the 14th ACM International Conference on Information and Knowledge Management, Bremen, Germany, October 31-November 5, 2005: 361-362. [24] ISOZAKI H, KAZAWA H. Efficient support vector classifiers for named entity recognition[C]//COLING 2002: The 19th International Conference on Computational Linguistics, Taipei, China, August 24-September 1, 2002: 271-278. [25] 张华平, 刘群. 基于角色标注的中国人名自动识别研究[J]. 计算机学报, 2004, 27(1): 85-91. ZHANG H P, LIU Q. Automatic recognition of Chinese personal name based on role tagging[J]. Chinese Journal of Computers, 2004, 27(1): 85-91. [26] 张玥杰, 徐智婷, 薛向阳. 融合多特征的最大熵汉语命名实体识别模型[J]. 计算机研究与发展, 2008, 45(6): 1004-1010. ZHANG Y J, XU Z T, XUE X Y. Fusion of multiple features for Chinese named entity recognition based on maximum entropy model[J]. Journal of Computer Research and Development, 2008, 45(6): 1004-1010. [27] 陈霄, 刘慧, 陈玉泉. 基于支持向量机方法的中文组织机构名的识别[J]. 计算机应用研究, 2008, 25(2): 362-364. CHEN X, LIU H, CHEN Y Q. Chinese organization names recognition based on SVM[J]. Application Research of Computers, 2008, 25(2): 362-364. [28] HU H, ZHANG H. Chinese named entity recognition with CRFs: two levels[C]//2008 International Conference on Computational Intelligence and Security, Suzhou, China, December 13-17, 2008. Piscataway, NJ, USA: IEEE, 2008: 1-6. [29] 张小衡, 王玲玲. 中文机构名称的识别与分析[J]. 中文信息学报, 1997(4): 22-33. ZHANG X H, WANG L L. Identification and analysis of Chinese organization and institution names[J]. Journal of Chinese Information Processing, 1997(4): 22-33. [30] 俞鸿魁, 张华平, 刘群, 等. 基于层叠隐马尔可夫模型的中 文命名实体识别[J]. 通信学报, 2006, 27(2): 87-94. YU H K, ZHANG H P, LIU Q, et al. Chinese named entity identification using cascaded hidden Markov model[J]. Journal on Communications, 2006, 27(2): 87-94. [31] 李丽双, 黄德根, 陈春荣, 等. 基于支持向量机的中文文本中地名识别[J]. 大连理工大学学报, 2007, 47(3): 433-438. LI L S, HUANG D G, CHEN C R, et al. Identification of location names from Chinese texts based on support vector machine[J]. Journal of Dalian University of Technology, 2007, 47(3): 433-438. [32] 黄诗琳, 郑小林, 陈德人. 针对产品命名实体识别的半监督学习方法[J]. 北京邮电大学学报, 2013, 36(2): 20-23. HUANG S L, ZHENG X L, CHEN D R. A semi-supervised learning method for product named entity recognition[J]. Journal of Beijing University of Posts and Telecommunications, 2013, 36(2): 20-23. [33] 燕杨, 文敦伟, 王云吉, 等. 基于层叠条件随机场的中文病历命名实体识别[J]. 吉林大学学报(工学版), 2014, 44(6): 1843-1848. YAN Y, WEN D W, WANG Y J, et al. Named entity recognition in Chinese medical records based on cascaded conditional random field[J]. Journal of Jilin University (Engineering and Technology Edition), 2014, 44(6): 1843-1848. [34] LI Y. Research and application of deep learning in image recognition[C]//2022 IEEE 2nd International Conference on Power, Electronics and Computer Applications (ICPECA), Chengdu, China, March 18-20, 2022. Piscataway, NJ: IEEE, 2022: 994-999. [35] XU S Y, NIU T, QU D, et al. An adaptation method in noise mismatch conditions for dnn-based speech enhancement[J]. KSII Transactions on Internet and Information Systems (TIIS), 2018, 12(10): 4930-4951. [36] LAURIOLA I, LAVAELLI A, AIOLLI F. An introduction to deep learning in natural language processing: models, techniques, and tools[J]. Neurocomputing, 2022, 470: 443-456. [37] DONG C, ZHANG J, ZONG C, et al. Character-based LSTM-CRF with radical-level features for Chinese named entity recognition[C]//Natural Language Understanding and Intelligent Applications: 5th CCF Conference on Natural Language Processing and Chinese Computing (NLPCC 2016), and 24th International Conference on Computer Processing of Oriental Languages (ICCPOL 2016), Kunming, China, December 2-6, 2016: 239-250. [38] RODRI GUEZ P, BAUTISTA M A, GONZALEZ J, et al. Beyond one-hot encoding: lower dimensional target embedding[J]. Image and Vision Computing, 2018, 75: 21-31. [39] HOWARD M W, SHANKAR K H, AUE W R, et al. A distributed representation of internal time[J]. Psychological Review, 2015, 122(1): 24. [40] ZHANG N, LI F, XU G, et al. Chinese NER using dynamic meta-embeddings[J]. IEEE Access, 2019, 7: 64450-64459. [41] 罗辉, 卢玲. 面向中文命名实体识别的中文字符表示方法[J]. 小型微型计算机系统, 2023, 44(7): 1434-1440. LUO H, LU L. Character embedding method for Chinese named entity recognition[J]. Journal of Chinese Computer Systems, 2023, 44(7): 1434-1440. [42] CAO P, CHEN Y, LIU K, et al. Adversarial transfer learning for Chinese named entity recognition with self-attention mechanism[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, October 31-November 4, 2018: 182-192. [43] ZHAO H, HUANG C, LI M. An improved Chinese word segmentation system with conditional random field[C]//Proceedings of the Fifth SIGHAN Workshop on Chinese Language Processing, Sydney, Australia, 2006: 162-165. [44] CHEN X, QIU X, ZHU C, et al. Long short-term memory neural networks for Chinese word segmentation[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, Lisbon, Portugal, September 17-21, 2015: 1197-1206. [45] MA X, HOVY E. End-to-end sequence labeling via bi-directional LSTM-CNNs-CRF[J]. arXiv:1603.01354, 2016. [46] 张华丽, 康晓东, 李博, 等. 结合注意力机制的Bi-LSTM-CRF中文电子病历命名实体识别[J]. 计算机应用, 2020, 40(S1): 98-102. ZHANG H L, KANG X D, LI B, et al. Medical name entity recognition based on Bi-LSTM-CRF and attention mechanism[J]. Computer Application, 2020, 40(S1): 98-102. [47] ZHANG Y, YANG J. Chinese NER using lattice LSTM[J]. arXiv:1805.02023, 2018. [48] LIU W, XU T, XU Q, et al. An encoding strategy based word-character LSTM for Chinese NER[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), Minneapolis, Minnesota, USA, June 2-7, 2019: 2379-2389. [49] QIU X, SUN T, Xu Y, et al. Pre-trained models for natural language processing: a survey[J]. Science China Technological Sciences, 2020, 63(10): 1872-1897. [50] ZHOU C, LI Q, LI C, et al. A comprehensive survey on pretrained foundation models: a history from BERT to ChatGPT[J]. arXiv:2302.09419, 2023. [51] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[J]. arXiv:1810.04805, 2018. [52] BLANCHARD A E, SHEKAR M C, GAO S, et al. Automating genetic algorithm mutations for molecules using a masked language model[J]. IEEE Transactions on Evolutionary Computation, 2022, 26(4): 793-799. [53] JIA C, SHI Y, YANG Q, et al. Entity enhanced BERT pre-training for Chinese NER[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), November 16-20, 2020: 6384-6396. [54] CHANG Y, KONG L, JIA K, et al. Chinese named entity recognition method based on BERT[C]//2021 IEEE International Conference on Data Science and Computer Application (ICDSCA), Oct 29-31, 2021: 294-299. [55] 杨飘, 董文永. 基于BERT嵌入的中文命名实体识别方法[J]. 计算机工程, 2020, 46(4): 40-45. YANG P, DONG W Y. Chinese named entity recognition method based on BERT embedding[J]. Computer Engineering, 2020, 46(4): 40-45. [56] JIN Y, XIE J, GUO W, et al. LSTM-CRF neural network with gated self attention for Chinese NER[J]. IEEE Access, 2019, 7: 136694-136703. [57] JIA Y, XU X. Chinese named entity recognition based on CNN-BiLSTM-CRF[C]//2018 IEEE 9th International Conference on Software Engineering and Service Science (ICSESS), Beijing, China, 2018: 1-4. [58] LIU W, FU X, ZHANG Y, et al. Lexicon enhanced Chinese sequence labeling using BERT adapter[J]. arXiv:2105. 07148, 2021. [59] YE N, QIN X, DONG L, et al. Chinese named entity recognition based on character-word vector fusion[J]. Wireless Communications and Mobile Computing, 2020, 2020: 1-7. [60] GU J, WANG Z, KUEN J, et al. Recent advances in convolutional neural networks[J]. Pattern Recognition, 2018, 77: 354-377. [61] GUO B, ZHANG C, LIU J, et al. Improving text classification with weighted word embeddings via a multi-channel TextCNN model[J]. Neurocomputing, 2019, 363: 366-374. [62] INARZ J, GOODFELLOW I, ARNOUD S, et al. Multi-digit number recognition from street view imagery using deep convolutional neural networks[J]. arXiv:1312.6082, 2013. [63] JADERBERG M, SIMONYAN K, VEDALDI A, et al. Deep structured output learning for unconstrained text recognition[J]. arXiv:1412.5903, 2014. [64] GUI T, MA R, ZHANG Q, et al. CNN-based Chinese NER with lexicon rethinking[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence (IJCAI-19), Macao, China, August 10-16, 2019. Menlo Park, California, USA: AAAI Press, 2019: 4982-4988. [65] 史占堂, 马玉鹏, 赵凡, 等. 基于CNN-Head Transformer编码器的中文命名实体识别[J]. 计算机工程, 2022, 48(10): 73-80. SHI Z T, MA Y P, ZHAO F, et al. Chinese named entity recognition based on CNN-Head Transformer encoder[J]. Computer Engineering, 2022, 48(10): 73-80. [66] KHANDUZI R, SANGAIAH A K. An efficient recurrent neural network for defensive Stackelberg game[J]. Journal of Computational Science, 2023, 67: 101970. [67] OUYANG E, LI Y, JIN L, et al. Exploring n-gram character presentation in bidirectional RNN-CRF for Chinese clinical named entity recognition[C]//CEUR Workshop Proceedings, 2017: 37-42. [68] HAN K, XIAO A, WU E, et al. Transformer in transformer[C]//Advances in Neural Information Processing Systems, 2021: 15908-15919. [69] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems, 2017. [70] YAN H, DENG B, LI X, et al. TENER: adapting transformer encoder for named entity recognition[J]. arXiv:1911.04474, 2019. [71] LI X, YAN H, QIU X, et al. FLAT: Chinese NER using flat-lattice transformer[J]. arXiv:2004.11795, 2020. [72] PINKUS A. Approximation theory of the MLP model in neural networks[J]. Acta Numerica, 1999, 8: 143-195. [73] LIU W, WEN Y, YU Z, et al. Large-margin softmax loss for convolutional neural networks[J]. arXiv:1612.02295, 2016. [74] ZHANG Z, SABUNCU M. Generalized cross entropy loss for training deep neural networks with noisy labels[C]//Advances in Neural Information Processing Systems, 2018. [75] KONKOL M, KONOPIK M. CRF-based Czech named entity recognizer and consolidation of Czech NER research[C]//16th International Conference on Text, Speech, and Dialogue, Pilsen, Czech Republic, September 1-5, 2013. Berlin, Heidelberg: Springer, 2013: 153-160. [76] 赵浩新, 俞敬松, 林杰. 基于笔画中文字向量模型设计与研究[J]. 中文信息学报, 2019, 33(5): 17-23. ZHAO H X, YU J S, LIN J. Design and research on Chinese word embedding model based on strokes[J]. Journal of Chinese Information Processing, 2019, 33(5): 17-23. [77] 闫河, 李尧, 雷秋霞, 等. 一种结合词汇信息特征的中文命名实体识别方法[J/OL]. 小型微型计算机系统: 1-8[2023-05-22]. http://kns.cnki.net/kcms/detail/21.1106.tp.20230516. 1727.016.html. YAN H, LI Y, LEI Q X, et al. Chinese named entity recognition method based on lexical information features[J/OL]. Journal of Chinese Computer Systems: 1-8[2023-05-22]. http://kns.cnki.net/kcms/detail/21.1106.tp.20230516.1727. 016.html. [78] ZHU Y, WANG G, KARLSSON B F. CAN-NER: convolutional attention network for Chinese named entity recognition[J]. arXiv:1904.02141, 2019. [79] JIA Y, MA X. Attention in character-Based BiLSTM-CRF for Chinese named entity recognition[C]//Proceedings of the 2019 4th International Conference on Mathematics and Artificial Intelligence, Beijing, China, January 19-20, 2019. Piscataway, NJ: IEEE, 2019: 1-4. [80] SUI D, CHEN Y, LIU K, et al. Leverage lexical knowledge for Chinese named entity recognition via collaborative graph network[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), Hong Kong, China, November 3-7, 2019: 3830-3840. [81] JOHNSON S, SHEN S, LIU Y. CWPC_BiATT: character-word-position combined BiLSTM-attention for Chinese named entity recognition[J]. Information, 2020, 11(1): 45. [82] SONG C, XIONG Y, HUANG W, et al. Joint self-attention and multi-embeddings for Chinese named entity recognition[C]//2020 6th International Conference on Big Data Computing and Communications (BIGCOM), Chongqing, China, December 18-20, 2020: 76-80. [83] DING R, XIE P, ZHANG X, et al. A neural multi-digraph model for Chinese NER with gazetteers[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Italy, July 28 - August 2, 2019: 1462-1467. [84] MENGGE X, YU B, LIU T, et al. Porous lattice transformer encoder for Chinese NER[C]//Proceedings of the 28th International Conference on Computational Linguistics, Barcelona, Spain, December 8-13, 2020: 3831-3841. [85] MA R, PENG M, ZHANG Q, et al. Simplify the usage of lexicon in Chinese NER[J]. arXiv:1908.05969, 2019. [86] XU C, WANG F, HAN J, et al. Exploiting multiple embeddings for Chinese named entity recognition[C]//Proceedings of the 28th ACM international Conference on Information and Knowledge Management, Beijing, China, November 3-7, 2019. New York, USA, ACM, 2019: 2269-2272. [87] MENG Y, WU W, WANG F, et al. Glyce: Glyph-vectors for Chinese character representations[C]//Advances in Neural Information Processing Systems, 2019. [88] XUAN Z, BAO R, JIANG S. FGN: fusion glyph network for Chinese named entity recognition[C]//5th China Conference on Knowledge Graph and Semantic Computing: Knowledge Graph and Cognitive Intelligence (CCKS 2020), Nanchang, China, November 12-15, 2020: 28-40. [89] SONG C H, SEHANOBISH A. Using Chinese glyphs for named entity recognition (student abstract)[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Menlo Park, California, USA: AAAI Press, 2020: 13921-13922. [90] WU S, SONG X, FENG Z. MECT: multi-metadata embedding based cross-transformer for Chinese named entity recognition[J]. arXiv:2107.05418, 2021. [91] WU S, SONG X, FENG Z, et al. Nflat: non-flat-lattice transformer for Chinese named entity recognition[J]. arXiv:2205.05832, 2022. [92] WANG Y, LU L, WU Y, et al. Polymorphic graph attention network for Chinese NER[J]. Expert Systems with Applications, 2022: 117467. [93] LI D, YAN L, YANG J, et al. Dependency syntax guided BERT-BiLSTM-GAM-CRF for Chinese NER[J]. Expert Systems with Applications, 2022, 196: 116682. [94] MAI C, LIU J, QIU M, et al. Pronounce differently, mean differently: a multi-tagging-scheme learning method for Chinese NER integrated with lexicon and phonetic features[J]. Information Processing & Management, 2022, 59(5): 103041. [95] DENG Z, TAO Y, LAN R, et al. Kcr-FLAT: a Chinese-named entity recognition model with enhanced semantic information[J]. Sensors, 2023, 23(4): 1771. [96] ZHANG B, CAI J, ZHANG H, et al. VisPhone: Chinese named entity recognition model enhanced by visual and phonetic features[J]. Information Processing & Management, 2023, 60(3): 103314. [97] GU R, WANG T, DENG J, et al. Improving Chinese named entity recognition by interactive fusion of contextual representation and glyph representation[J]. Applied Sciences, 2023, 13(7): 4299. [98] HU X, JIANG Y, LIU A, et al. EnTDA: entity-to-text based data augmentation approach for named entity recognition tasks[J]. arXiv:2210.10343, 2022. [99] JU M, MIWA M, ANANIADOU S. A neural layered model for nested named entity recognition[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), New Orleans, Louisiana, USA, June 1-6, 2018: 1446-1459. [100] ARSHAD O, GALLO I, NAWAZ S, et al. Aiding intra-text representations with visual context for multimodal named entity recognition[C]//2019 International Conference on Document Analysis and Recognition (ICDAR), Sydney, Australia, September 22-25, 2019. Piscataway, NJ: IEEE, 2019: 337-342. [101] ZHANG X, YUAN J, LI L, et al. Reducing the bias of visual objects in multimodal named entity recognition[C]//Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining, Singapore, 27 February-3 March 2023. New York, NY: ACM, 2023: 958-966. [102] PANTON G, CHENG Z M, DE REGT A, et al. The impact of voice assistants on effort saving, decision delegation and satisfaction: an abstract[C]//Optimistic Marketing in Challenging Times: Serving Ever-Shifting Customer Needs: Proceedings of the 2022 AMS Annual Conference, May 25-27, Monterey, CA, USA. Cham: Springer Nature Switzerland, 2023: 267-268. [103] FENG S, YAN X, SUN H, et al. Intelligent driving intelligence test for autonomous vehicles with naturalistic and adversarial environment[J]. Nature Communications, 2021, 12(1): 748. [104] LIAN W, XUE T, LU Y, et al. Research on hierarchical data fusion of intelligent medical monitoring[J]. IEEE Access, 2019, 8: 38355-38367. |
[1] | 李镇淮, 战荫伟. 360度视频与视口预测方法综述[J]. 计算机工程与应用, 2024, 60(2): 19-31. |
[2] | 杨玮, 钟名锋, 杨根, 侯至丞, 王卫军, 袁海. 基于NVAE和OB-Mix的小样本数据增强方法[J]. 计算机工程与应用, 2024, 60(2): 103-112. |
[3] | 周建亭, 宣士斌, 王婷. 融合遮挡信息的改进DDETR无人机目标检测算法[J]. 计算机工程与应用, 2024, 60(1): 236-244. |
[4] | 林文龙, 阿里甫·库尔班, 陈一潇, 袁旭. 面向遥感影像目标检测的ACFEM-RetinaNet算法[J]. 计算机工程与应用, 2024, 60(1): 245-253. |
[5] | 曾慧玲, 李琳, 吕思洋, 何铮. 提示学习驱动的新闻舆情风险识别方法研究[J]. 计算机工程与应用, 2024, 60(1): 182-188. |
[6] | 陈吉尚, 哈里旦木·阿布都克里木, 梁蕴泽, 阿布都克力木·阿布力孜, 米克拉依·艾山, 郭文强. 深度学习在符号音乐生成中的应用研究综述[J]. 计算机工程与应用, 2023, 59(9): 27-45. |
[7] | 姜秋香, 郭伟鹏, 王子龙, 欧阳兴涛, 隆睿睿. Python语言在水文水资源领域中的应用与展望[J]. 计算机工程与应用, 2023, 59(9): 46-58. |
[8] | 罗会兰, 陈翰. 时空卷积注意力网络用于动作识别[J]. 计算机工程与应用, 2023, 59(9): 150-158. |
[9] | 张姁, 杨学志, 刘雪南, 方帅. 视频脉搏特征的非接触房颤检测[J]. 计算机工程与应用, 2023, 59(8): 331-340. |
[10] | 岱超, 刘萍, 史俊才, 任鸿杰. 利用U型网络的遥感影像建筑物规则化提取[J]. 计算机工程与应用, 2023, 59(8): 105-116. |
[11] | 赵萍, 窦全胜, 唐焕玲, 姜平, 陈淑振. 融合词信息嵌入的注意力自适应命名实体识别[J]. 计算机工程与应用, 2023, 59(8): 167-174. |
[12] | 刘华玲, 皮常鹏, 赵晨宇, 乔梁. 基于深度域适应的跨域目标检测算法综述[J]. 计算机工程与应用, 2023, 59(8): 1-12. |
[13] | 何家峰, 陈宏伟, 骆德汉. 深度学习实时语义分割算法研究综述[J]. 计算机工程与应用, 2023, 59(8): 13-27. |
[14] | 张艳青, 马建红, 韩颖, 曹仰杰, 李颉, 杨聪. 真实场景下图像超分辨率重建研究综述[J]. 计算机工程与应用, 2023, 59(8): 28-40. |
[15] | 韦健, 赵旭, 李连鹏. 融合位置信息注意力的孪生弱目标跟踪算法[J]. 计算机工程与应用, 2023, 59(7): 198-206. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||