计算机工程与应用 ›› 2023, Vol. 59 ›› Issue (9): 319-328.DOI: 10.3778/j.issn.1002-8331.2205-0270
王昌海,梁辉,王博,崔晓旭
WANG Changhai, LIANG Hui, WANG Bo, CUI Xiaoxu
摘要: 利用历史交易数据预测股市指数未来走势是金融领域的重要问题,使用图卷积网络融合指数间走势关联性是该领域的前沿热点。针对当前图卷积指数预测中历史与未来动态图不一致的问题,提出一种基于指数成分股构建图结构的图卷积指数走势预测方法G-Conv。该方法提取传统量化特征和一维卷积网络的深度特征作为预测样本的特征。使用指数的成分股数据构建指数图结构,并对不同指数样本特征做图卷积以得到指数预测结果。使用A股中42个常用指数验证该方法的有效性。实验使用MAE和MSE作为模型训练的损失函数,选取GC-CNN、AD-GAT等经典方法作为比较基准,结果表明在两种误差评价标准下,G-Conv分别降低平均预测误差5.10%和4.20%,且表现出较好的泛化性能。