计算机工程与应用 ›› 2022, Vol. 58 ›› Issue (16): 274-283.DOI: 10.3778/j.issn.1002-8331.2111-0448
李梦蝶,赵光,罗灵鲲,胡士强
LI Mengdie, ZHAO Guang, LUO Lingkun, HU Shiqiang
摘要: 数据驱动的剩余寿命(remaining useful life,RUL)预测是复杂系统健康管理的重点研究内容,然而数据集的缺乏制约了不同系统上RUL预测的研究。针对这一问题,以飞控系统为例,提出一种仿真模型和数据混合驱动的RUL预测方法。该方法通过模型仿真提供充足的故障数据,并结合改进CNN-LSTM网络实现高质量的故障信息提取。首先对系统及其故障模式建立仿真模型,利用蒙特卡罗方法生成随机故障时间序列并依次注入故障,根据仿真响应和失效阈值确定序列的寿命标签,即可生成包含多组随机序列的系统失效数据集;其次利用长短时记忆网络(long short-term memory,LSTM)提取系统状态参数时间序列的故障信息,结合一维卷积神经网络(1D-CNN)提取不同状态参数之间的关联特征,从而形成时序-空间相结合的剩余寿命预测网络。充分的实验结果证明了所提方法对不同系统均能帮助达到动态和准确的剩余寿命预测。