计算机工程与应用 ›› 2023, Vol. 59 ›› Issue (23): 73-85.DOI: 10.3778/j.issn.1002-8331.2212-0234
陈迪,杜韬,周劲,仵匀政,王心耕
CHEN Di, DU Tao, ZHOU Jin, WU Yunzheng, WANG Xingeng
摘要: 经典的密度峰值聚类算法在计算局部密度时过分依赖截断距离,在分配非中心点时易出现连锁效应,且人工选取聚类中心点的方式难以识别出密度不均匀簇的聚类中心。针对该问题,提出一种自适应多密度峰值子簇融合聚类算法。考虑样本的邻域信息,将自然邻居的思想引入密度峰值聚类中,实现了样本点局部密度的自适应计算;为发现稀疏密度簇的中心,提出一种簇中心自动选取策略用于确定初始子簇中心,并使用一种两阶段分配策略降低连锁效应发生的概率;提出一种基于K近邻相似度的度量准则,将相似度高的子簇进行融合,得到最终的聚类结果。在二维合成数据集以及UCI数据集上,相较经典的密度峰值聚类算法以及近年来对其改进的算法,该算法表现出更优异的性能。