计算机工程与应用 ›› 2023, Vol. 59 ›› Issue (21): 91-101.DOI: 10.3778/j.issn.1002-8331.2207-0446
徐童童,解滨,张喜梅,张春昊
XU Tongtong, XIE Bin, ZHANG Ximei, ZHANG Chunhao
摘要: 密度峰值聚类算法(DPC)是一种简单高效的无监督聚类算法,能够快速找到聚类中心完成聚类。该算法通过截断距离定义局部密度未考虑样本点的空间分布特征;通过决策图选择聚类中心点,具有较强人为主观性;在分配样本点时采用单一分配策略,易产生连带错误。因此提出一种自适应聚类中心策略优化的密度峰值聚类算法(ADPC),采用共享近邻定义两点之间的相似性度量,重新定义了局部密度,使局部密度反应样本间的空间分布特征;通过相邻点之间斜率差分确定样本密度[ρ]与相对距离[δ]的乘积[γ]值的“拐点”,并对[γ]进行幂函数变换,以提高潜在聚类中心与非聚类中心的区分度,利用决策函数确定潜在的聚类中心,再通过潜在聚类中心之间距离均值自适应确定真实聚类中心;优化了非聚类中心点的分配策略。通过在UCI以及人工数据集上进行实验,该算法都可以自适应准确选定聚类中心,且在一定程度上提高了聚类性能。